
École Normale Supérieure d’Ulm

Internship report

Designing and implementing a new index
data structure for the Irmin backend

Gabriel Belouze

under the direction of
Ioana Cristescu, Craig Ferguson, Clément Pascutto

Tarides
75005, Paris

February-July 2021

https://tarides.com/

Contents
1 Introduction 1

2 State of the art 1
2.1 The external memory model . 1
2.2 PGM-index . 2
2.3 B-trees . 2

3 Detailed B-tree algorithms 3
3.1 Lookup . 3
3.2 Insertion . 4
3.3 Deletion . 5
3.4 Batch initialisation . 6
3.5 Recovery . 7

4 Implementation 7
4.1 Specifications . 7
4.2 Design . 7

4.2.1 Implemented variant . 7
4.2.2 Representation on disk, representation in memory 8
4.2.3 Leveraging the OCaml module system for safer serialisation 9
4.2.4 Code structure . 11

4.3 Performance . 11
4.3.1 Benchmarking . 11
4.3.2 Optimisations . 13

4.4 Integrity . 14
4.5 Concurrency . 15
4.6 Caveats . 16

4.6.1 bytes v string . 16
4.6.2 Phantom keys and deletion . 16
4.6.3 Performance drop . 16
4.6.4 Memory blow ups . 18
4.6.5 Impact of Stats on performance . 18

5 Future work 18
5.1 Milestones . 18
5.2 Optimisations to explore . 18

5.2.1 Prefix B-trees . 18
5.2.2 Suffix truncation . 18
5.2.3 Offline insertions . 19

5.3 Miscellaneous improvements . 19

1

This document is both a report of my internship at Tarides, and a guide to use or follow up
my work there. As such, it contains both theoretical discussions and low level, implementation-
directed information.

Acknowledgements

1 Introduction
irmin-pack is a storage backend written in OCaml, developed for and used by the Tezos

blockchain. irmin-pack maintains a component for pure data storage, called the pack , and an
index component containing metadata to access content in the pack, logically called the index .
The index maps hashes of content to location information in the pack ; in short it is no more
than a key value data structure.
The current implementation of index provides fast look-ups but quadratic insertions. The
goal of the internship was to design and implement a more scalable data structure, fine tuned
to the irmin-pack use case. In particular, it would need to provide data integrity and partial
support for concurrency, while solving the performance issues.

We considered two potential data structures, PGM-index and B-trees. Many well-known
database systems are B-tree based (MySQL, InnoDB, SQLite), and B-trees were our ultimate
choice. We implemented cactus , a disk-resident alternative to index using B-trees as its
underlying datastructure, and successfully integrated it to irmin-pack. Benchmarks showed
promising results, gaining several orders of magnitude on insertions over index , and maintain-
ing slightly worse lookups. Concurrency support was designed but remains to be implemented.

We first present in section 2 an overview of the theoretical works that laid the ground for our
design. In sections 3 and 4, we give a more in-depth description of the core btree algorithms,
then discuss our implementation – its design and how it performs. Those two sections are closely
related: it is necessary to be familiar with btree concepts to understand the rational for our
design, but the precise algorithms also depend on structural design choices. Finally, we discuss
in section 5 perspectives for future improvements on the project.

2 State of the art

2.1 The external memory model
The external memory (EM) model is a model of computation most relevant to evaluate al-

gorithms that work with disk-resident data. When data is too big to fit into main memory
and is stored on a disk drive, I/O is typically the bottleneck as its latency is several order of
magnitude greater than any other elementary operation. To read data at address addr, a hard
drive first moves its magnetic head to the correct location, then retrieve a page of contiguous
data. Typically, a page is a few kilobytes.
The external memory model capture a two-level memory hierarchy, where the CPU is connected
to a fast cache of bounded size M , itself connected to an unbounded, slow, disk. The CPU
can transfer blocks of B bytes of data to and from the disk (I/O calls). The complexity of an
algorithm is then evaluated with regards to its I/O cost.

Binary Search Trees in the EMmodel To understand the need for EM-specific algorithms,
it is useful to understand where a classical data structure such as a BST falls short. BST’s
nodes contain very few information – only a single binding and two pointers. Because BSTs
are constantly rebalanced, there is no concept of locality: a node may very well be stored on a
different block than its parent. This means that inspecting a node is highly unoptimal, fetching

1

https://tarides.com/internships/b-tree-index-for-irmin-backend

B bytes of data and only reading a few. To look up a value in a BST with n bindings, log2(n) I/O
calls may be necessary (a whole log2 !). We can improve the base of the logarithm considerably
by storing B bytes of actual data inside each node (subsection 2.3) .

2.2 PGM-index
The PGM-index ([3]) is a learnt index with provable worst-case bounds similar to canonical

indexes. It recursively builds a tree-like data structure on top of the data, to find and exploit
local regularities. Compared to other traditional indexes, it considerably reduces the space
overhead, while maintaining queries and updates fast in theory, and very fast in practice.

The rational behind the PGM-index can be derived from interpolation search. Interpolation
search improves upon binary search when the values are uniformy distributed. Indeed in that
case, rather than inspecting blindly the middle slot, one can predict a linear model for the
function rank from the extreme values, i.e. rank(val) = a · val+ b, and look up the rank(v)-th
slot. This provides an almost constant O(log log n) query complexity. Of course in general, one
cannot assume uniform distributions, but this bound makes it desirable to find local linearities
in the data, where interpolatoin search can be used.

Building on this, the PGM-index predicts the rank function to be piecewise linear. More
precisely, it sets a maximal error ε (usually ε = 2k for some small integer k), and optimally
splits the data into contiguous subarrays, where linear interpolation approximates rank up to ε.
Thus a new array is built on top of the data, where each element describes one subarray, i.e. its
linear interpolation and the range of values it covers. To look up a key k, we first find the sub-
array which range k falls into. This gives a linear interpolating function φ, and we can predict
the rank of k to be approximately φ(k). Thus we can finally find k with a binary search between
φ(k) − ε and φ(k) + ε. Still, how can we efficiently find the correct sub-array ? Recursively,
of course. That is, we build more levels of sub-arrays on top of the one we constructed, until
we get an array of length one. Look ups can proceed from one level to the one below with the
strategy described above.

The PGM-index suffers from a few limitations which made it unsuitable as an index re-
placement. Mainly, the issue lies in the fact that PGM-index assumes given the sorted array of
values (without which the rank function is irrelevant). When the data does not fit in memory,
maintining such array becomes a challenge. This is the very task that index tackles - and does
with quadratic (read problematic) complexity. In fact, index uses hashes as keys, which are
uniformly distributed ; there is no improvement to gain from finding local regularities.
Note that the PGM-index does not find the same pitfall as binary trees. Indeed, even though
a tree traversal (e.g. during a lookup) must access the array of values several times, all tree
levels but the last one are typically small enough to be cached. It appears that the PGM-index
would be an extremely well suited data structure when the keys are by nature monotonous (for
instance, timestamps), as insertion becomes trivial.

2.3 B-trees
Introduced in 1971 by Bayer and McCreight, and described as "ubiquitous" less than 10

years laters ([2]), B-trees still are the canonical data structure for indexing. They provide
O(log(n)) lookups, insertions and removal, support several techniques to provide data integrity
and concurrency access, and are backed-up by a wide use in the industry (see [4, 5] for an
in-depth survey on btree techniques). Importantly, the complexity for btree operations in the
EM-model is O(logB(n)) where B is the size of a disk page (typically, 4096 octets). They were
the retained data structure for index .

2

Just like binary trees, B-trees are search trees, where keys in interior nodes act as separators
between subtrees. Unlike binary trees, the number of such separators can vary and is much
greater than 2. More precisely, btrees are search trees that follow the three invariants: sortedness,
density, balance. B-trees are sorted because any key from a left subtree is smaller than any key
from a right subtree. They are dense because every node contains at least f keys and at most
2f keys, where f is a hyperparameter called the tree fanout. Finally, they are balanced because
all root-to-leaf paths have the same length.
Typically, we want a node of a btree to fill exactly one disk page, and we choose accordingly a
fanout f = Θ(B). It follows that the height of the tree is always O(logB(n)), which consequently
means that lookup is O(logB(n)) – which is optimal in the EM model. As we will see later
(section 3), this bound also holds for insert and delete.

3 Detailed B-tree algorithms
In this section, we detail the core algorithms of our btrees: lookup, insert, remove, batch-

init, recover. Even though lookup, insert and remove are well-known in the literature,
their exact specifications depend on some design choices about the structure of btrees and
their representation. The reader may want to refer to subsubsection 4.2.1 (and in particular
4.2.1, §Localisation of values) to fully appreciate this section. This is even more true of the
last two algorithms batch-init and recover which were developed ad hoc (see respectively
section 4.3.2, §Batch initialisation and subsection 4.4).

Notations We let f be the fanout of the btree, i.e. a set hyperparameter. Btrees are composed
vertices, we can be either leaves or nodes (sometimes refered to as interior nodes). We call canopy
the non-leaf part of the btree.

Reminders Three B-tree invariants drive the design of the subsequent algorithms.
Sortedness In a node N , if the key k separates the left subtree T1 from the right subtree T2, then

∀k1 ∈ keys(T1), ∀k2 ∈ keys(T2), k1 ≤ k < k2. Moreover, in any vertices, the keys are
sorted.

Density In a vertex V , f ≤ |keys(V)| ≤ 2f . The root is an exception and may contain less than f
keys.

Balance There exists h such that the (shortest) path from the root to any leaf uses exactly h edges.
h is called the height of the tree.

Premilinary results Note that density and balance together ensure that h = θ(logf (n)).

3.1 Lookup
lookup(k) is straightforward. It starts at the root, and recursively descends the tree to the

only leaf L that would be allowed to contain k according to sortedness. Then it is simply a
matter of looking up among the keys in L, which a classical binary search does well (keys in L
are sorted).
To descend from a node N containing separators k1 < . . . < kp, lookup finds the greatest i
such that ki ≤ k < ki+1. Again, a binary search can achieve this efficiently.

Performance Each node inspection may require a single I/O call, and there are no more such
inspections that the height of the tree. Hence, the algorithm achieves a O(logf (n)) complexity
in the EM model. The number of comparisons is O(log2(f) logf (n)) = O(log2(n)).

3

3.2 Insertion
The insertions of key k can be described in 3 steps.

Descent Find the only leaf L where k is allowed to go as per sortedness.
Insertion Add k to L in its correct slot so as to leave keys(L) sorted.
Rebalance If necessary, operate the necessary balancing operations to maintain density

The descent step is similar to that of lookup. At step rebalance, two situations may arise.

No split If L still has less than 2f keys, there is nothing to do (Figure 1).

Figure 1: No split is needed.

Split If L was already maxed out at 2f keys before the insertion, it overflows. A new
leaf L′ is created and half the bindings from L are moved there, leaving L with f + 1 bindings
and L′ with f bindings – this is called a split . A separator must be inserted in the parent
node to separate L and L′. This of course is done recursively, by following steps insertion and
rebalance (Figure 2).

Figure 2: Leaf L overflows and splits into 2 leaves. A separator is added in the parent node.

Updating the separators In the case of a split, we need a strategy to choose a separator for
L and L′. First, we can notice that all other separators can be left unchanged without breaking
sortedness, so we indeed should only be concerned with the new separator. What key to use
? There is always a valid separator between two neighbouring subtrees: the lowest key of the
higher subtree. In the drawing for instance, K5 can be chosen as a valid separator.

When the root splits It may happen eventually that insert recursively reaches the root.
If the root itself is maximally filled, then it splits into two nodes N1 and N2, and a new root
is created with them as its only children (which is indeed allowed for a root). This is the only
situation where the height of the tree may increase, as all other splits grow the tree in width.

4

Performance insert reads at most h nodes, and creates at most another h nodes. In the
end, the algorithm runs, like lookup, with O(logf (n)) I/O calls (external memory model).

3.3 Deletion
As for insert, the deletion of a key k follows three steps

Descent Find the only leaf L where k could as per sortedness.
Deletion Delete k from L.

Rebalance If necessary, operate the necessary balancing operations to maintain density

Again, only the third step rebalance needs precision. 3 situations may arise.

No merge If leaf L still maintains density after the deletion, there is nothing more to
do.

Figure 3: No merge is needed.

Partial merge If leaf L had exactly f keys at the start of the algorithm, it now under-
flows. L’s neighbours are inspected. If one neighbour L′ has some keys to spare, we redistribute
keys(L)∪keys(L′) evenly among L and L′. This is called a partial merge, and restores density
but breaks sortedness. The separator between L and L′ is thus updated to restore sortedness.
The details of this last step vary whether L′ was L’s lower or upper neighbour (see Figure 4).

(a) Low partial merge.

(b) High partial merge.

Figure 4: L underflows, but there are keys to spare in L’s neighbours. The low and high partial
merges correspond to merging with the higher or lower neighbour.

5

Total merge Lastly, it may happen that L underflows while both its neighbour have
exactly f keys. In this case, redistributing won’t restore density. Instead L is totally merged
with one of its neighbour L′: the bindings from L move to L′, and L is deleted. In doing so,
we must also delete the separator in the parent node between L and L′. This of course is done
recursively, by following steps deletion and rebalance (see Figure 5).

Figure 5: Total merge.

Deleting the root When the tree is shallow, it may happen than deletions recursively procede
to the root. The root has no neighbour to rebalance with, but is allowed to underflow, so the
no-merge case occurs. If however the root had only a single key (and hence a single child) to
begin with, then it is deleted and its only child becomes the new root. This is the only time the
height of the tree may decrease, as indeed other merges only decrease the width of the tree.

Performance remove inspects at most 3 vertex per level of the tree. Thus it runs, as the
other first two algorithms, with O(logf (n)) I/O calls (external memory model.)

3.4 Batch initialisation
Btrees are known to be relatively (although consistently) slow, notably because of the need

of balancing operations. Often, we need to initialise a tree with a batch of bindings first. In our
use-case, this will come especially handy to support migration from an index store (see also
section 4.3.2). In such situation, it is much more efficient to have a dedicated batch initialisation
algorithm, rather than to insert values of the batch one by one.

Our batch-init algorithm works in two phases. First, sort the batched bindings by key order,
and second, recursively build the btree levels, starting from the leaves.

Sorting We cannot assume that the batch of initial values fits in memory. In fact, in the
case of a migration from an index store, it is likely not to be the case. Thus, an external
sorting algorithm must be called – we chose to use external-merge-sort, an instance of
merge-sort adapted to work with disk-resident data.

Building the tree Given the array of sorted bindings, the btree can be recursively built,
level by level, starting from the leaves. Simply put, the array of bindings is partitioned into
groups of size f . Each group forms a vertex and produces a new binding for the next level. The
new binding is the tuple composed of the group’s leftmost key and of a pointer to the vertex
formed by the group. When all groups have been processed, a sorted array of new bindings (f
times smaller than the initial array) has been constructed. It is recursively fed to the algorithm
to produce the next btree level, as shown in figure 6.

6

Figure 6: Schematic for the functionning of batch-init

3.5 Recovery
A close variant of batch-init is recover that we developed to ensure data integrity (see

subsection 4.4). The recover task asks to build the btree knowing only its leaves. This is in fact
a task we can readily perform, as it is exactly the tree building step of batch-init.

4 Implementation

4.1 Specifications
The most notable use-case of irmin is as the backend for Tezos. As such, cactus inherits

the same constraints as index , namely
Memory The maximum allowed memory usage is 1GB.

Latency Any operation should complete under 1s.
Integrity The system may crash at any point and cactus must be able to recover with minimal

data loss.
Concurrency cactus must at least be able to handle concurrent access from 1 writer and 3 readers.

Crucially, those instances may not share memory.
We were able to meet all constraints but concurrency. Concurrency is specifically challenging
because instances cannot share a cache – yet our implementation relies on an efficient caching
framework. A roadmap was designed to provide concurrent access, though not implemented
(see 4.5).

Additionally, cactus may assume all keys and values have the same fixed size (indeed in the
Tezos use-case, keys are hashes). This will come in handy for serialisation.

4.2 Design
4.2.1 Implemented variant

Localisation of values We chose to implement B+-trees, a common variant of btrees. In
B+-trees, all bindings are stored in the leaves. Keys in interior nodes act as separators but do
not hold any additional information. This design presents several convenient properties. Firstly,
this makes the implementation more straightforward, as it separates nicely tree traversal from
the retrieval of values. Secondly, separators need not anymore be keys that are bound in the
tree. This offers opportunities for optimisations (see 5.2.1 and 5.2.2). Finally, because all of the
information lives in the leaves, data integrity can only be concerned with preserving the leaves.
This fits well into our caching protocol and makes ensuring data integrity almost trivial (see
4.4).

7

Adding a min key An internal node with n key separators k1, . . . , kn points to n+1 children
c0, . . . , cn. If K is the space of keys, we can notice there are two implicit bound keys k0 = inf K
and kn+1 = supK, such that any key k from child ci verifies ki ≤ k < ki+1. It is convenient in
terms of implementation to think as internal nodes as maps from key separators to other nodes
; unfortunately there is one too many children. This was solved by explicitly storing the low
bound key k0 = inf K in the node, and mapping separator ki to child ci.

Mutable v immutable Two kinds of mutability are at stake: the data structure’s and its
physical representation’s. We want an interface similar to that of index :

val replace: t -> key -> value -> unit
val find: t -> key -> value
val mem: t -> key -> bool

Hence the data structure must be mutable. We chose to make the underlying representation on
disk of the tree mutable as well. This is a trade-off: on the one hand, immutability provides
easier guarantee of correction, easier concurrent access, and easier data integrity ; on the other
hand, mutability decreases the write amplification, the overall number of syscalls, and allows
for efficient caching (section 4.2.2, §Caching).

4.2.2 Representation on disk, representation in memory

Representation on disk We represent a btree in a b.tree file. A b.tree file is composed
of a header followed by a succession of fix-sized sections called pages. One page can encode an
internal node or a leaf. A page is composed of a header, which among other things encode if
the page is a leaf or a node, followed by a succession of fix-sized sections called bindings. Each
binding contains -at least- a key and a bound (understand, the object that is bound in the page).
A bound is an actual value in leaves, and an address to another page in nodes.

Figure 7: b.tree file format

To know how to decode a page, one must know whether it represents a node or a leaf. Hence
it is important that node headers and leaf headers share a part which, at least, encodes the
underlying kind of the page.

Represention in memory The granularity of access to b.tree is the scale of a page. Usually,
a btree transaction only inspects a few bindings from the nodes and leaves it traverses. To avoid
unecessary page deserialisation overhead, we directly manipulate raw bytes . Because bindings
have fixed-length, this representation is equivalent to working with an array of bindings. In
particular, it has constant random binding access, and thus allows for O(log n) binary search.

8

Caching A single btree lookup must traverse the tree from the root to the correct leaf.
This yields tree_height access to pages, and as many syscalls if those pages are not al-
ready buffered. There is then much to gain from an efficient cache, reducing several syscalls to
potentially only one.
A crucial consideration is that no vertex can be accessed without first inspecting its parent.
Hence any optimal cache should be "stable by predecessor". We chose to implement a general-
purpose caching protocol, that is optimal in a random access setting, i.e. when the keys bound
in the btree are all equally likely to be looked up. In such cases, no branch needs to be prefered
over another, and the caching hierarchy should be breadth-first.
We implemented a cache that is parametrised by a hyperparameter cache_size , expressing
an upper bound on the in-memory size of the cache. Our cache is structured in 3 ordered levels:

California you can never leave The california level permanently buffers the first l levels of the tree,
where l is the largest possible so that california cannot overgrow the allowed cached
size.
l is in fact directly a function over f the fanout and c the scaled cache size (c =

cache_size
page_size

is the upper bound on the number of cached pages). The number of pages at depth h is
at most 2f that at depth h− 1, hence the first x levels can contain at most

∑x−1
k=0(2f)k =

(2f)x−1
2f−1 pages. This gives l =

⌊
log2f (1 + c · (2f − 1))

⌋
.

Lru The exponential nature of a btree means that, even though the level right below califor-
nia cannot be fully buffered, there may be most of the allowed cache size left to use. We
leverage this by caching as much of this level as allowed in an LRU cache.

Volatile The last cache level is dedicated to the pages in all other levels, which are only buffered
through the length of one transaction, and immediately flushed away afterwards. We
must only be careful not to flush a page that is still in use by a another module of the
application. In practice, this means that the top level module of the application (the
transaction manager) explicitly advocates when it is safe to flush out volatile entirely,
e.g. at the end of a transaction.

Note that the cache level a page must be loaded to is only dependent on the depth of the
underlying vertex it represents.
Importantly, the exponential nature of btrees means that most of the tree can be cached in
practice. For instance, if a btree holds 50GB of data, and has a fanout of 50, then only a little
more than 1GB of memory are necessary to hold all but the last level of the tree in the cache.
When lookups are not uniform, but instead are skewed to, for instance, a specific key range, a
different caching protocol may yield better performance. For instance, the whole cache could
be fitted inside a single LRU data structure. It must only made sure that the benefits exceed
the cost of maintaining the LRU ordering.

4.2.3 Leveraging the OCaml module system for safer serialisation

Manipulating raw bytes is prone to serialisation and deserialisation errors. Each field must
be read and written at the correct offset, with the correct serialiser. The underlying value
type is of course not enough to catch a serialiser being wrongly used, as several fields may
hold data of the same type, but yet require different serialisers. For instance, node headers
contain a field n_entry: int counting the number of bindings present, but also contain many
address: int , i.e. pointers to other pages. A n_entry field need only enough bytes to
encode 2 · fanout while an address may need to encode a much larger int , thus different
serialisers may be desired.

I was keen on setting up a serialisation framework with both decent type safety, enough
flexibility that the file format could be easily modified, and granularity precise enough to access
or modify part of a vertex without recomputing its serialisation.
Let’s illustrate the implemented framework with a toy file format .toy. A .toy file encode

9

a type toy = [`Dead of int | `Alive of int] array . It contains a header, with a field
n_alive: int and a field n_dead: int , followed with a succession of elements. Each element
has a field alive: bool and a field value: int . We want to write two functions

val serialise: toy -> bytes
val deserialise: bytes -> toy

Encapsulate First, each field -representing the encoding of some object with type underlying -
is dedicated its own module, with signature

sig
type t
type convert

val set: bytes -> off:int -> t -> unit
val get: bytes -> off:int -> t
val size: int
val to_t: convert -> t
val from_t: t -> convert

end
with type convert := underlying

The two functions set and get are the serialiser and deserialiser of the field, respec-
tively. Note that we fix in advance the length of the serialisation to size . This may
sometimes waste a few bytes, but let us access any field without traversing the ones pre-
ceeding.

Offsets and sizes Second, each "basic brick" of the file format, i.e. the header and the
element yields an offset record and a size variable.

type header_off = { n_alive: int ; n_dead: int }
type elem_off = { alive : int ; value : int }

let header_sizes = [Nalive.size ; Ndead.size]
let header_size = List.fold_left (+) 0 header_sizes
let header_offs = match sizes_to_offsets header_sizes with

| [n_alive ; n_dead] -> {n_alive ; n_dead}
| _ -> assert false

let elem_sizes = [Alive.size; Value.size]
let elem_size = List.fold_left (+) 0 header_sizes
let elem_offs = match sizes_to_offsets elem_sizes with

| [alive ; value] -> {alive ; value}
| _ -> assert false

Serialise Finally, it is now straightforward to implement our desired serialisation functions
(here only deserialise is illustrated).

let deserialise buff =
let n_alive = Nalive.get buff ~off:header_offs.n_alive in
let n_dead = Ndead.get buff ~off:header_offs.n_dead in
let n_elem = (Nalive.from_t n_alive) + (Ndead.from_t n_dead) in
Array.init n_elem @@ fun i ->

let off = header_size + i * elem_size in

10

let alive = Alive.get buff ~off:(off + elem_offs.alive) in
let value = Value.get buff ~off:(off + elem_offs.value) in
if Alive.from_t alive then

`Alive (Value.from_t value)
else

`Dead (Value.from_t value)

This framework has the granularity and flexibility desired. It catches some errors at com-
pilation time, but is still liable to - for instance - mixing up header_offs.n_alive and
header_offs.n_dead . However, the consistent namespacing should make most mistakes ap-
parent - and in my experience it has.
Note that if our goal was only to implement serialise and deserialise , a solution based
on the OCaml Repr module should be prefered. Our solution has the desired property that we
can modify part of the object with minimal serialisation (e.g. if we want to change an element
from `Alive to `Dead in our toy example).

4.2.4 Code structure

The top level module is Btree . It is the only module to have knowledge of the btree structure,
and logically, is in charge of monitoring the tree traversal and balancing operations. The Vertex
module handle leaf-local and node-local operations. In particular, this is where the page format
and the matching serialisation protocol live. Finally, the Store module is the storage manager;
it abstracts the cache and syscalls away. This is also where the file format specification is
implemented.

4.3 Performance
4.3.1 Benchmarking

Replacing the data structure underlying index was primarily motivated by performance
concerns. index performs lookups very efficiently, with in practice 1 syscall only, but has
quadratic complexity for insertions. As the Tezos blockchain grows, it should become infeasible
to keep it as is. Therefore it is crucial that cactus performs and scales better comparatively
– and a great deal of time was spent monitoring its performance.

Profiling tools We used the perf analysis tool to profile time performance, and the memtrace
ocaml package to profile memory allocations. Both tools produce flamegraphs, which represent
function calls in layers, ordered with respect to the call stack and with size proportional to the
total time taken by the function (or in the case of memtrace , the total memory allocations
entailed). They often make apparent the bottlenecks of the application.
In addition, we implemented our own btree-local timers, to be wrapped around function calls
(see module Stats). They make it possible to track the distribution of a few handpicked func-
tions’ call latency, where flamegraphs average over all calls to the function. This is especially
relevant to see the evolution in time of such distributions, which shows the impact the size of
the tree has on performance.

Benchmarks We tested cactus in several contexts. For each of those, several setups, with
different hardware, were used. Namely, benchmarks were run on
rasp a Raspberry 4 model B with 4GB RAM.

packet1 an equinix t1.small.x86, with 8GB RAM and one 80GB SSD.
packet2 an equinix c1.small.x86, with 32GB RAM and two 120GB SSD.

We set the fanout to be 50 and allowed a maximal cache size of 1GB.

11

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://metal.equinix.com/developers/docs/servers/server-specs/
https://metal.equinix.com/developers/docs/servers/server-specs/

High-insert The first benchmarking context continuously adds new bindings to the tree. This
tests the maximal supported insertion throughput and its relation to the tree size.

(a) packet2 50M insertions in an initially empty store. I/O is steady as the b.tree file
grows. The completion curve is basically linear, indicating little variance in the rate of
insertions 71M ops/sec.

(b) packet2 1G insertions in an initially empty store. Once the store is big enough, I/O
gets costlier. Insertion rates subsequently drops from 52M ops/sec to 8.2M ops/sec.

Figure 8: Violin graph of different runs of the high-insert benchmark.

Bootstrap trace The second benchmarking context runs cactus against realistic user com-

12

(c) rasp 20M insertions in an intially empty store. Once the store is big enough, I/O gets
costlier. Insertion rate subsequently drops from 8M ops/sec to 1.6M ops/sec.

Figure 8: Violin graph of different runs of the high-insert benchmark.

mands. The commands replay the end of the bootstrap of a Tezos node. The initial store
already contains 291M bindings, the trace contains 100M operations – 10M add , 69M
find and 20M mem .

Irmin-btree The last benchmarking context plugs cactus into irmin-pack and runs the
bootstrap of a tezos node.

Difference between cactus and index The quadratic cost of insertion in index is only
problematic in so far as there are realistic situations where the store can reach a problematic
size. In particular, the O(n2) complexity hides a small constant, while for btrees the O(log n)
hides a big constant. It was therefore crucial to compare them against one another in a Tezos
production setting.
Additionally, it must be noted that the pressure on hardware is of a different kind between the
two data structures. index writes a lot of data in append only mode ; cactus writes small
bits of data in random locations. This questions almost orthogonal properties of the hardware:
the maximal byte throughput and the random disk access overhead.

4.3.2 Optimisations

Flushing dirty pages only Pages are regularly flushed in and out of the cache to maintain
memory constraints. Flushing out a page yields one syscall, which are the bottleneck of the
data structure. Sometimes, the flushed-out page does not need to be written on disk, as it has
not been modified – it is said to be clean. This happens when a page is loaded in response to a
read-only transaction, such as a lookup.
We can and should keep track of dirty pages: we can leverage our convenient serialisation
protocol which ensures that any page modification passes through a set -like function. To

13

avoid mistakenly modifying a page without marking it as dirty, it is enough to modify slighty
the interface of a field module (section 4.2.3, §) and add a "mark-as-dirty" argument.

val set: marker:(unit -> unit) -> bytes -> off:int -> t -> unit

Minimising buffer allocations The application can be intensive in memory allocations.
Whenever a page is loaded into memory, a new buffer (several Ko long) must be allocated. On
the other hand, when a page is flushed out, the buffer holding its content becomes free to use.
We subsequently reuse leftover buffers to load new pages in the cache.

Phantom keys A common btree trick is to associate a "dead" flag to every key. Deleting a key
inside a node becomes a matter of simply flipping a bit, balancing operations notwithstanding.
This conveniently creates holes in the node that can later on be filled during the insertion of
another key, which otherwise would need to shift keys to create an opening. Some authors (see
for instance [4]) also recommend to allow nodes to underflow, predicting subsequent insertions
which could bypass calls to merge altogether – although we chose not to implement this feature.
In fact, we found a caveat that came with phantom keys (see subsubsection 4.6.2), while it was
not clear that they improved performance.

Batch initialisation Replacing index with cactus likely will need to migrate existing
stores to the new data structure. To be more efficient than adding the migrating bindings one
by one, which is quite slow, we implemented a batch initialisation utility. The algorithm (see
4.3.2) first calls an external merge-sort on the keys, then creates the btree in a bottom up
manner. To this end, we developed oracle , a small external sorting OCaml library.

4.4 Integrity
A real-world data base system needs to be able to recover gracefully from abrupt interruption,

with minimal data loss. An interruption can have many sources: a system crash, a power cut
or simply an interrupt signal sent by the user. Two invariants express this integrity constraint.

Recoverability The disk content should be consistent at any point of the program, that is the application
should be able to read and make sense of the information persisted on disk.

No-loss When the application yields control back to the user at the end of a transaction, enough
information should be persisted that the modifications incured by the transaction can be
retrieved, e.g. after insert x yields back control, x can be considered to be part of the
data base even in the event of a crash.

Data integrity is not hard to achieve naively. For instance, one could maintain an ordered
record of all transactions from the creation of the data base. Recovering from a crash then is a
simple matter of replaying back the full history. Of course, this is not feasible: first, the history
log will grow indefinitely, and second, recovery might take as long as the database is old. Worst,
if the underlying system is unstable, say because the system works over a network which often
breaks, the recovery process could crash before termination and need to start over. If recovery
takes too long, it might start over and over and never be able to terminate.
On the other hand, it is not satisfying either to bypass the application cache altogether and
persist everything all the time. no-loss would be given for free, but the application latency
would be greatly increased overall.

Our solution to integrity comes naturally from our caching hierarchy applied to B+-trees.
For large enough trees, only the top part of the tree can be cached and leaves are continuously
flushed to the disk. Now, in our design, all information is leaf-resident; nodes only hold meta-
information to navigate the tree. This means that recoverability is already almost free: a

14

recovery process may inspect every page, ignoring all non-leaves, and writing a new, equally
valid, canopy over the existing one (see subsection 3.5 for details on the recovery process).
no-loss is almost given since leaves are flushed continuously. The only troublesome situation
is when several leaves are modified as part of a single transaction. What happens if the system
crashes while some but not all leaves have been written to disk ? There are two operations
where such issue could arise, we deal with them separately.

crash during split An insertion in a leaf L1 may trigger a split if the leaf was already full.
After the split, a new leaf L2 has been created and half the bindings from L1 have been moved
to L2. Sadly, we cannot atomically flush L1 and L2 at the same time.
1. If we first flush L1 and the system crashes, we’ll have lost half the bindings and broken

the no-loss invariant.
2. If we first flush L2 and the system crashes, we’ll have duplicata among the leaves and

the recoverability invariant will be broken (leaves with duplicata do not describe a
consistent btree).

We chose a simple solution which consist in detecting duplicata during recovery. However, we
want to avoid inspecting every key from every leaf. Instead, it is sufficient to detect when a leaf’s
covered key range is a subset of one of its neighbours’. This can be done simply by comparing
the leftmost and rightmost keys of neighbouring leaves.

crash during merge A deletion of a key k in a leaf L1 may trigger a merge if the leaf was
already at bottom capacity. After the merge, a neighbouring leaf L2 will have received the
bindings from L1, and L1 will be deleted.
1. If we wirst flush the deletion of L1 ans the system crashes, we’ll have lost all its bindings

and broken the no-loss invariant.
2. If we first flush L2 and the system crashes, we’ll have duplicata among the leaves and the

recoverability invariant will be broken
It seems we can pick option 2 since the modified recovery algorithm described above can already
handle duplicata in the leaves. However, it is possible that the range of keys from pre-merge L1

is not a subset of the range of keys of L2 post-merge ! This is the case when k is L1’s smallest
key (and L2 is the right neighbour) or its largest (and L2 is the left neighbour). The solution is
a 3-step flushing process :
1. Delete k from L1. Flush L1.
2. Merge L1 into L2. Flush L2.
3. Flush the deletion of L1.

Caveat We did not precisely benchmark this recovery process, but it is somewhat slow. It
should still be sufficient for episodic post-crash recovery. Moreover, the recovery process is not
yet duplicata-aware as it was described above.

4.5 Concurrency
The concurrency specifications that cactus should support differ from the usual concurrency

requirements quite a bit. They are in general more relieving, as a single concurrent process
may have write rights, which in particular suppresses the need for any latching and locking
mechanism. The trouble, because trouble there is, lies in the fact that the processes may not
share memory. Hence the question: how should readers keep up with the latest updates given
to the writer ?

Naively, of course, it would be enough to flush all dirty pages on disk every time a reader needs
to sync up. This adds latency to the writer, because it reduces the benefits of efficient caching,

15

and to the reader, which needs to get rid of its cache altogether at each sync . Our goal is to
do better than the naive approach, that is, we still want to leverage the efficient caching of both
the writer and the readers.

The first key idea is to realise that pages that are neither in the reader nor the writer’s cache
don’t need to be synced. The second idea is that, provided that sync is called often enough,
pages in the reader’s cache are almost in sync. Finally, the third realisation is that the writer’s
California cache and the reader’s California cache contain the same pages. This provides the
bases for our roadmap to achieve concurrency.

TODO

4.6 Caveats
This subsection targets specifically readers interested in working on cactus . It lists out

miscellaneous recommendations and issues we faced during implementation, that we think are
relevant again for further implementation.

4.6.1 bytes v string

A reader keen on the functional programming paradigm might regret that the use of mutable
representations at the core of our design does not fully leverage the assets of OCaml, and they
would be right. Using bytes as the internal representation of vertices - and worst, reusing
them to buffer new pages - was a source of bugs and might still be. In fact strings , the
immutable counterpart of bytes in OCaml, were at first the data structure of choice.

We decided to migrate to bytes for performance consideration. In a typical btree insertion,
only a few bytes per page are modified. With immutable buffers, each of those modifications
entails an allocation of a new page-sized string. In comparison, modifying cached buffers in
place incur no memory allocation.

4.6.2 Phantom keys and deletion

Recall from section 4.3.2, §Phantom keys that we introduced a "phantom bit" to facilitate
deletion. Without phantom keys, traversing a node (for instance during lookup(k)) is a matter
of finding the greatest i such that ki ≤ k (where k0 < . . . < kp are the node separators). With
phantom keys, we need to find the greatest i such that ki ≤ k and such that ki is not a phantom
key. For instance we can get this with a regular binary search, then looking left to the first
non-phantom key.
Here comes the issue: during a merge in a run of delete (see 3.3), we look for neighbours to
take keys from, glancing over phantom neighbours. This is actually a source of bug that can
break the sortedness invariant, as illustrated in figure 9. Our solution was to detect when such
cases occur and locally remove phantom keys. It is not obvious that this cannot hide another
bug, and we think that phantom keys may need to be removed from the design in the future.

4.6.3 Performance drop

We observed in some situations a significant performance drop with the rate of insertions
decreasing by an order of magnitude. This happened on medium to big stores -with b.tree
being several gigabytes large- and, interestingly, only on machine running MacOS, although we
are not sure if and why it is OS related.

16

Figure 9: A partial merge can break sortedness when phantom keys are present. In the final,
keys in the parent node are not sorted anymore.

Figures 10a and 10b show the run of 50M insertions on an initially empty btree on different
machines. The violin graphs plot the latency of calls to Btree.add and Syscalls.write . The
task completion plot shows the percentage of insertions done so far. On the MacOS machine,
after about 25M bindings are inserted, some I/O calls become expensive, insertions subsequently
slow down and the completion curve flattens. Comparing the latency of insertions and I/O calls,
clearly I/O is responsible for the bad performance.

An additional observation that is not visible in the graphs is that concomitant to the perfor-
mance drop are punctual high-latency I/O calls which take more than a second. Those happened
once every 30 seconds exactly, and were not disturbed by the addition of random sleeps – mean-

17

ing that the 30 seconds are a manifestation of some sort of clock external to the application.
We could not pinpoint the cause of this behaviour, although we suspect that the OS I/O cache
might be at stake. Fortunately, the Tezos use-case will run cactus on linux, which behaved
fine in our benchmarks. Additional details can be found at [1].

4.6.4 Memory blow ups

The amount of RAM allowed to the cache is a user-defined btree parameter. Yet, when btrees
were plugged to irmin, we observed inconsistent blow-ups of peak memory usage. We know that
this does not come from btrees but rather from memory allocations in irmin not yet collected
by the gc, as these blow-ups did not occur when replaying the same operations to btrees as
a standalone module. However, these blow-ups also do not occur when index is plugged into
irmin. We are not sure where the peak memory usage came from, but it also seems that the
issue eventually fixed itself out, which was both a good and a bad sign.

4.6.5 Impact of Stats on performance

A Stats module can be used in btrees to monitor the performance of the main functions.
The functions are by default not tracked, and tracking can be independently set for each of
them. While this provides convenient information, we warn any future developer that the cost
on performance is noticeable, enough that only a handful functions should be tracked during
benchmarking, and none in production.

5 Future work

5.1 Milestones
Integrity checks While we are able to recover from a system crash, btrees are currently
reliable as far as the stable storage hardware is. This is too optimistic, it happens that individual
bits randomly flip, and we’d like to be able to detect and recover from those as well. The
implementation of an integrity-checking background process should be a priority before cactus
can go into production.

Concurrency Obviously, support for concurrency should be implemented, all the more that
a design to achieve it was already sketched.

5.2 Optimisations to explore
5.2.1 Prefix B-trees

As a btree grows, bottom nodes (and leaves especially) cover a narrower range of keys. In
particular, we can know in advance the first few bytes that a key must have in order to appear
in a given node. This leaves room for an optimisation: we may only store the unknown suffix
part of the keys. In particular, this allows us to pack more bindings into a single page. This
implements the well-known prefix btree (see for instance [4], chapter TODO).

5.2.2 Suffix truncation

Suffix truncation is another technique that allows more bindings to be packed into a single page.
In internal nodes, separators need not be actual keys from the tree, they only need to correctly
split the key ranges. We can then choose the separator with minimal length that still has the
correct logical semantic. For instance, to separate key abcdefg and key accdefg, it is enough to
store the separator ac.
There is a caveat to this, in that we cannot use this technique to separate between already
truncated separators (which we may be tempted to do two levels above the leaves and higher).

18

Indeed consider figure 11 where the root separates between i and int instead of index and
inode. The transaction lookup(index) willincorrectly look in the right subtree.

5.2.3 Offline insertions

Suppose the user wants to run both insert(x) and insert(y) on a btree store. If x and y are
"very different", those transactions are almost orthogonal, in that x will be inserted in, e.g.,
some left branch of the tree, and y in some right branch. Provided that those transactions
do not provoke a root-split, they can happen concurrently. Implementing such application-
local concurrency may improve performance. It is unlikely to increase the maximal insertions
throughput, since I/O calls are the bottleneck. However in a real world application, where
insertions are interwoven with random waits and other transactions, it might provide almost
instantaneous insertions.
Note that this framework has other implications - such as on data integrity - and likely is not
trivial to implement.

5.3 Miscellaneous improvements
Unix dependency Currently, btree uses the Unix module to interact with the file system.
Mostly, this dependency comes from I/O calls which already are abstracted away in Syscalls .
It should be desirable and relatively straightforward to be platform-agnostic. The first for this
will be to functorise the storage manager over Syscalls .

A more versatile release The application explicitly advocates to the storage manager when
it is safe to clear the Volatile cache, through a release call. Currently, the semantic of a
release is that no buffer is held anywhere in the application anymore. This is quite coarse, there
are situations where we wish to release a single page only. In particular, this will be necessary
to have control over the order of calls to flush , as needed for data integrity (see 4.4).

References
[1] Exploring a performance drop in btrees. https://hackmd.io/S017exncRju-P9WvMtz6Ow.

Last updated: 2021-05-01.

[2] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, June 1979.

[3] Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: A fully-dynamic compressed
learned index with provable worst-case bounds. Proc. VLDB Endow., 13(10):1162–1175,
April 2020.

[4] Goetz Graefe. Modern b-tree techniques. Found. Trends Databases, 3(4):203–402, April
2011.

[5] Alex Petrov. Database Internals. O’Reilly Media, Inc., October 2019.

19

https://hackmd.io/S017exncRju-P9WvMtz6Ow

(a) MacOS, 16GB RAM, 2.3GHz CPU

(b) Ubuntu, 32GB RAM, 2GHz CPU

Figure 10: Performance drop appears on MacOS but not Ubuntu, for roughly equivalent hard-
ware.

20

Figure 11: Incorrect suffix truncation : the root key in separates between i and int instead of
index and inode.

21

	Introduction
	State of the art
	The external memory model
	PGM-index
	B-trees

	Detailed B-tree algorithms
	Lookup
	Insertion
	Deletion
	Batch initialisation
	Recovery

	Implementation
	Specifications
	Design
	Implemented variant
	Representation on disk, representation in memory
	Leveraging the OCaml module system for safer serialisation
	Code structure

	Performance
	Benchmarking
	Optimisations

	Integrity
	Concurrency
	Caveats
	ocamlbytes v ocamlstring
	Phantom keys and deletion
	Performance drop
	Memory blow ups
	Impact of ocamlStats on performance

	Future work
	Milestones
	Optimisations to explore
	Prefix B-trees
	Suffix truncation
	Offline insertions

	Miscellaneous improvements

