
O P T I M I Z AT I O N W I T H O U T
B A C K P R O PA G AT I O N

gabriel belouze*

supervisor
victor nicollet

†

referent
vincent lepetit

‡

Master II of Computer Science
Mathématiques, Vision & Apprentissage (MVA)

April-September 2022

* École Normale Supérieure
† Lokad Inc.
‡ École des Ponts ParisTech

A B S T R A C T

Forward gradients have been recently introduced to bypass backprop-
agation in autodifferentiation, while retaining unbiased estimators
of true gradients. We derive an optimality condition to obtain best
approximating forward gradients, which leads us to mathematical
insights that suggest optimization in high dimension is challenging
with forward gradients. Our experiments both on test functions and
high-dimensional real-world problems support this claim.

ii

In view of all that we have said in the foregoing sections,
the many obstacles we appear to have surmounted,

what casts the pall over our victory celebration?
It is the curse of dimensionality, a malediction

that has plagued the scientist from the earliest days.

— Richard Bellman [7]

A C K N O W L E D G E M E N T S

Many thanks to everybody who helped me conduct this work.

Thank you to Paul Peseux and Ziyad Benomar for their insightful
comments and ideas in many informal discussions. Thank you also
to Raphaël Rozenberg who, even from outside of Lokad, was able to
give many helpful advices. Thanks to the engineering team of Lokad
for helping me understand the ins and outs of the Envision compiler,
and to all Lokad for welcoming me and providing a profitable work-
ing environment.

And of course, thank you especially to Victor Nicollet for the creation
of this internship, his continuous support and his never ending ex-
pertise.

iii

C O N T E N T S

acronyms v
1 introduction 1

1.1 Context of the Internship 1

1.1.1 Lokad . 1

1.1.2 Goals of the internship 1

1.2 Results . 2

1.3 Organization of this Report 2

2 automatic differentiation 4

2.1 Automatic Differentiation in a nutshell 4

2.1.1 Forward and reverse modes 4

2.1.2 Checkpointing 6

2.2 Forward Gradient . 7

3 optimization in machine learning 9

4 automatic differentiation in envision 11

4.1 Intermediate Representation 11

4.1.1 ADSL . 11

4.1.2 Rex . 12

4.2 Partial Views of Parameters 13

4.3 Forward Mode . 14

4.3.1 Implementing forward mode AD 14

4.3.2 Proof of Concept for Memory Optimizations . . 14

5 optimization with forward gradients 20

5.1 Choice of Tangent Law 20

5.2 Mistakes in Forward Gradient Descent 23

5.2.1 The Curse of Dimensionality 24

5.2.2 Forward Gradient for Linear Objectives 25

6 experiments 29

6.1 Experiments on test functions 29

6.1.1 Specification . 29

6.1.2 Results . 31

6.2 Envision production scripts 34

6.2.1 A typical supply chain model in Envision . . . 35

6.2.2 Convergence . 36

6.2.3 Computational costs 37

6.3 Batch mode . 38

7 conclusion 40

a derivations 41

a.1 Proof of Property 2 . 41

a.2 How far does a random walk go ? 41

bibliography 43

iv

A C R O N Y M S

AD Automatic Differentiation

ADSL Automatically Differentiable Sub-Language

DP Differentiable Programming

DSL Domain Specific Language

IL Intermediate Language

IR Intermediate Representation

jvp Jacobian Vector Product

SGD Stochastic Gradient Descent

vjp Vector Jacobian Product

v

1
I N T R O D U C T I O N

This document presents my work done at Lokad, as part of my end
of study internship for the MVA master.

1.1 context of the internship

1.1.1 Lokad

The Lokad company addresses Supply Chain Management challenges.
It sells both a consulting expertise, through the roles of Supply Chain
Scientists, as well as a complementary IT solution with its home-made
Domain Specific Language (DSL) Envision. Typically, supply chain
scientists answer questions about stock prediction, demand modeli-
sation, pricing, etc.
The Envision programming language is the primary tool that accom-
panies supply chain scientists. The language is tailored towards ex-
pressing relational queries, à la SQL, but exposes a Python-like syn-
tax. It offers two essential features : static relational inference, à la
pandas, and Differentiable Programming (DP).

1.1.2 Goals of the internship

automatic differentiation The DP construct in Envision is
fairly recent: it stems from the work of Paul Peseux for his PhD the-
sis, which is still ongoing [20]. It exposes Reverse Mode Automatic
Differentiation (AD) capabilities in Envision.
Automatic differentiation has become an ubiquitous tool for the ma-
chine learning practitioneer ; it enables one to use the Jacobian Jf of
a primal function f : Rn → Rm, whilst only writing the program that
computes the primal. This becomes crucial for any gradient based op-
timization schemes (or even higher order methods). It usually comes
in two modes : Forward and Reverse. Forward mode is suited for
problems where n � m and only adds a constant factor of mem-
ory and time overhead. Reverse mode is suited for problems where
m � n and adds, in its vanilla form, an unbounded memory over-
head factor. In many applications, f is a loss, with m = 1,n� 1, and
reverse mode, despite its cost, is prefered.

forward gradient However a recent paper “Gradients without
Backpropagation” by Baydin et al. [5] proposes a method to use for-
ward mode AD even in cases where m � n, through the use of

1

https://www.lokad.com/home
https://www.master-mva.com/
https://docs.lokad.com/
https://pandas.pydata.org/

1.2 results 2

forward gradients, which are unbiased estimates of the true gradients,
and showed promising results in high dimensional contexts such as
Deep Learning.
This method would be, if successfully applied, especially relevant for
Lokad. Data in industrial Supply Chain contexts is generally large
(often of the TeraByte order), and memory management is a concern
in Envision. The internship goal was thus to explore the viability of
the method by Baydin et al. for the Lokad applicative context.
Models used at Lokad are typically lower dimensional than in deep
learning, but have a different struture (e. g. they are not overparametrized).
Evaluating the performance of forward gradient in this context would
serve to further support its use in real-world applications, or on the
contrary expose some of its limitations.

1.2 results

Our contribution is two fold.

The first facet of our work is theoretical. Among the family of ac-
ceptable forward gradients proposed by Baydin et al., we exhibit one
that is optimal. We also find that the criterion for acceptability from
[5] can be relaxed, and provide the associated relaxed optimal for-
ward gradients.

The form that takes optimal forward gradient is particularly simple
and amenable to further analysis. This leads us to show that forward
gradients have theoretical shortcomings in high dimensions.

The second facet is experimental. We further the experiments from
[5] with a much more comprehensive set of test functions, and find
that in practice as well we observe degrading performance of forward
gradients in higher dimensions.

We also implemented forward gradients in Envision, and tested
them against the actual models used in production at Lokad, with
their associated real world datasets. We show then that forward gra-
dients both converge to worse loss than true gradients, and are less
stable. We do find that the runtime is alleviated with forward mode,
but although we show that forward mode may use arbitrily less mem-
ory on degenerated examples, there is no tangible difference in prac-
tice.

1.3 organization of this report

This documents is split into two main parts.

In chapters 2 and 3, we provide a primer on the theoretical back-
ground which the work done during the internship relies upon.

1.3 organization of this report 3

chapter 2 exposes a state of the art of autodifferentiation. Specific at-
tention is given to the difference between forward and reverse modes,
and a detail presentation of “Gradients without Backpropagation” is
given, which is seminal to this internship.

chapter 3 summarizes classical gradient-based optimization algo-
rithms in machine learning. Specifically, SGD and Adam (and its
derivates) are reviewed, as they constitute the basis of our experi-
ments.

In the second part, chapters 4, 5 and 6, we detail our work and our
results.

chapter 4 presents the current implementation of autodifferentia-
tion in Envision, and how we built upon it to expose forward gradient
capabilities.

chapter 5 is more theoretical by nature. There, we derive an optimal
variation to Baydin et al.’s forward gradients, and provide analytical
insights as to why forward gradient descent could be challenging.

Finally, chapter 6 presents our experimental results, and shows that
forward gradients fail to match the results obtained from reverse au-
todifferentiation.

Appendix A contains some complementary proofs.

2
A U T O M AT I C D I F F E R E N T I AT I O N

This chapter acts as a primer on Automatic Differentiation (AD). Au-
tomatic Differentiation is a family of algorithms that take a program
that computes f : Rn → Rm and derive a program that computes the
Jacobian Jf : Rn → Rm ×Rn. We review here the two modes of auto-
matic differentiation, Forward and Reverse, the main implemention
and optimization techniques, and finally we summarize specifically
the article by Baydin et al. [5], which offers a new perspective on the
modes of differentiation and is seminal for our work.

For a more comprehensive review of the theory on ‘autodiff’, we
recommend Baydin et al.[4], and Margossian[16] for details on imple-
mentation techniques, which we barely address.

2.1 automatic differentiation in a nutshell

Take a program that computes some differentiable function f : Rn →
Rm, which may use complex control flow constructs, such as loops,
conditionals or recursion. For a given evaluation point x, we may
record the computation flow to construct an evaluation graph, which
is a directed acyclic graph where nodes express an atomic computa-
tion (Figure 1a). This in turn may be flatten in topological sort order
to ultimately obtain the evaluation trace represented as a program in
its simplest form, a Wengert list (Wengert [25]) (Figure 1b).

2.1.1 Forward and reverse modes

At the heart of automatic differentiation is the chain rule. For each pri-
mal variable in the evaluation trace, we compute a differential vari-
able which carries order 1 sensitivity information. The specification
for this information defines the mode of the automatic differentiation.
In both modes, the chain rules expresses relationships between those
variables, which allows us to compute them.

forward mode In the forward mode of automatic differentiation,
we choose an initial tangent v ∈ Rn. vi defines the sensitivity
of the i-th parameter xi. Then for each intermediary variable w
in the Wengert list, which mathematically correspond to some
function fw of the input x, we compute the tangent of w, which
is

ẇ
∆
= Jfw · v

4

2.1 automatic differentiation in a nutshell 5

(a) Evaluation graph

w0 <- 2π

w1 <- n

w2 <- e

w3 <- w1 / w2
w4 <- w0 * w1
w5 <- w3 ^ w1
w6 <- sqrt(w4)

w7 <- w6 * w5

(b) Wengert list

Figure 1: Representations of a program execution

or less formally, ẇ = ∂w
∂x · v. Consider now w as an atomic func-

tion φ of win = (wi1 , . . . ,wiK), which is the vector of wengert
variables that are the parent ofw in the computation graph.win
is itself a function fin of the input, whence we get fw = φ ◦ fin.
The chain rules then writes

Jfw(x) · v = Jφ(win) · Jfin(x) · v = Jφ(win) · (ẇi1 , . . . , ẇik)

or again less formally, ẇ =
∑
k
∂w
∂wik

· ẇik . Thus, it is enough
to know the jacobians of the atomic functions to inductively
compute all tangents variable.
Ultimately, we compute simultaneously the primal f(x) and the
Jacobian Vector Product (jvp) Jf(x) · v. This is a single pass of
the forward mode – if we wish to compute the full jacobian
instead, then n passes are necessary.

reverse mode In the reverse mode of automatic differentiation, we
choose an initial cotangent u ∈ Rm. For an intermediary Wengert
variable w, we compute the adjoint of w, which represents the
sensitivity of the output y ∈ Rm in the cotangent direction with
respect to w. That is,

w̄
∆
=
∂y

∂w
·u

2.1 automatic differentiation in a nutshell 6

Consider wout = (wj1 , . . . ,wjL) the wengert variables that are
children ofw, with associated atomic functions φj1 , . . . ,φjL . Now
we can again leverage the chain rule to write

w̄ =
∂y

∂w
·u

=
∑
l

∂wil
∂w

· ∂y
∂wil

·u

=
∑
l

∂φil
∂w
· w̄il

Again, it is enough to know the jacobians of the atomic func-
tions to inductively compute all adjoints.
Ultimately, we compute the primal f(x) and the Vector Jacobian
Product (vjp) Jf(x)T ·u. If we wish to compute the full jacobian
instead, then m passes are necessary.

There are two key differences between the two modes. First, if we
wish to obtain the full jacobian, then the problem dimensions n and
m will dictate which mode is better suited ; in particular in many
machine learning contexts, f is a loss and m = 1, whence a single
reverse mode pass is enough to obtain the full gradient. Second, the
two modes compute sensitivity information in different orders : while
forward mode compute the tangents in the same order as the primal,
reverse mode starts from the end. This in fact is crucial for two rea-
sons:

1. Forward mode may be implemented by interweaving primal
and tangent computations, and in particular does not require more
than twice the primal memory usage. Reverse mode must be imple-
mented in two passes, the forward – or accumulation – pass, and the
infamous backpropagation pass. Before backpropagation, all interme-
diary values must be stored. The memory overhead is proportionnal
to the amount of computations, which in general is an unbounded fac-
tor of the primal memory bound (think for instance of while loops).

2. Forward mode does not require knowledge of the evaluation
graph (the parents of a variable can be determined on the fly by
looking at the atomic function call). Reverse mode must build the
evaluation graph during the forward pass, which not only adds to
the memory overhead, but also requires a more involved implemen-
tation.

2.1.2 Checkpointing

Checkpointing is a technique used to reduce peak memory usage in
reverse mode, and more generally trades memory cost for runtime.

2.2 forward gradient 7

Instead of storing all intermediary variables, which may be infeasi-
ble, checkpointing strategies propose to store some variables in snap-
shots, and recompute some other on the fly. Thus, less memory is
necessary, but primal computations may be duplicated. One key in-
sight is that recomputations may not necessarily start from the very
beginning, but instead can use some earlier intermediary snapshots..

In general, the trade-off between memory and computations trans-
lates into the choice of where to take snapshots and which variables
to store in them. As argued by Dauvergne and Hascoët[9], even if the
places for the snapshots are fixed, there is no single optimal choice
of variables to store, but rather the optimal choice is problem depen-
dent.

2.2 forward gradient

As stated earlier, forward mode autodifferentiation has better com-
putational properties but is generally infeasible for many machine
learning problems. We present here the idea by Baydin et al.[5] which
opens the door to forward mode for f : Rn → R even with n� 1.

Given an initial tangent, a single forward pass produces the jvp
〈∇f ·v〉, which tells us how much the gradient agrees with the tangent
direction v. Hence as a proxy for the true gradient, we can use the
tangent scaled by this jvp. That is, Baydin et al. define the forward
gradient to be g(θ) = 〈∇f · v〉v. The key idea is that this can be an
unbiased estimate of the gradient granted v is sampled according to
a carefully designed distribution. Let us first state the properties that
this law must satisfy.

definition 1 : tangent law properties

We say that the probability law p on Rn satisfies the tangent law
properties when the marginals (v1, . . . , vn) of v ∼ p satisfy

vi ⊥⊥ vj ∀i 6= j
E(vi) = 0 ∀i
V(vi) = 1 ∀i

(1a)

(1b)

(1c)

Now, the following theorem from [5] states that indeed the tangent
law properties given above are enough to make the forward gradient
a good estimator for the gradient.

theorem 1

Let f : Rn → R, p that satisfies the tangent law properties, and g the
forward gradient associated to f and p. Then g(θ) is an unbiased
estimator of ∇f(θ).

Many convergence results, e. g. for stochastic gradient descent, only
assume given an unbiased estimate of the gradient, and not the true

2.2 forward gradient 8

gradient. There are thus theoretical ground supporting the use of
forward gradients. Furthermore, the authors conducted experiments
with simple neural networks architectures, using N(n, In) as tangent
distribution, and report encouraging results : the network weights are
optimized as fast as with true gradients in terms of epochs, and faster
in terms of CPU time (this makes sense as forward mode is generally
faster than reverse mode).

3
O P T I M I Z AT I O N I N M A C H I N E L E A R N I N G

Many machine learning problems ask to minimize an empirical risk
objective, of the form

L(θ) =
1

M

M∑
k=1

l(θ; xk)

with respect to the vector parameter θ ∈ Rn. The dataset {x1, . . . , xM}

being typically very large, gradient based optimization method use
the batch gradient instead

gB(θ) =
1

|B|

∑
k∈B
∇l(θ; xk)

where B is sampled uniformly in the subsets of {1, . . . ,M} of size
B. In the limit, B is equal to 1, and we obtain the simplest gradient
scheme, Stochastic Gradient Descent (SGD) [22], which performs the
iterative updates

θt+1 = θt −α · g1(θt)

where the hyperparameter α is called the learning rate. When L

is sufficiently regular, g(θ) being an unbiased estimator of the true
gradient is enough to guarantee convergence, with rate O(1/t) (see
for instance Bach[1]).

Other accelerated schemes are derived from vanilla SGD, notably
its momentum variants (Nesterov[18]), and may reach up to O(1/t2)
convergence.

More recent methods, popular in the deep learning community,
propose to update each coordinate of θ independently with still con-
vergence guarantees (see Défossez et al.[10]) ; among those the ultra-
widely-used Adam [13]. Adam maintains an element-wise moving
average of gradients and of their square, called first and second mo-
ment.

m̃t+1,i = β1m̃t,i + (1−β1)g(θt)i, mt,i =
m̃t,i

1−βt+11

ṽt+1,i = β2ṽt,i + (1−β2)g
2(θt)i, vt,i =

ṽt,i

1−βt+12

9

optimization in machine learning 10

The first moment acts as the usual gradient with heavy-ball mo-
mentum, and the second moment is used for element-wise scaling,
yielding the following update

θt+1 = θt −α ·
mt√
vt + ε

(operations are done element-wise)

As noticed by Balles and Hennig[2], Adam can also be understood
as a sign descent weighted inversely proportionnally to the relative
variance of the gradient. That is

mt√
vt

=
sign(mt)√
vt/m

2
t

= sign(mt)

√
1

1+ η2t

where η2t,i
∆
=
vt,i−m

2
t,i

m2
t,i

is an approximation of the relative variance
σ2t,i
∇L2t,i

, as long as mt and vt approximate well ∇L and ∇L2.

We will see later in chapter 5 that this decoupling of Adam into
those 2 aspects provides insights as to what using Adam with for-
ward gradients amounts to.

Finally, we mention here Adabelief [27] as an alternative to Adam
which is believed to be more stable to noisy gradients, and have bet-
ter generalization properties than Adam. Adabelief is obtained by
replacing the second moment of Adam with the moving average of
empirical variance, i. e.

ṽt+1 = β2ṽt + (1−β2)(g(θt) −mt)
2

The rational for this update is that mt can be interpreted as a previ-
sion for the gradient, and vt as our confidence in the current gradient
sample with respect to what the prevision was. As such, we take big
steps when our confidence is high (vt is low), and conversely small
steps when it is low.

4
A U T O M AT I C D I F F E R E N T I AT I O N I N E N V I S I O N

The goal of this chapter is to bridge the gap between the theoretical
AD exposition from chapter 2 and Envision. First, we detail how au-
tomatic differentiation is implemented in Envision (section 4.1). Then
we discuss the specifity of differentiating over relational, categorical
data (section 4.2) – a topic that stems from Paul Peseux’s work [21].
Finally, we review forward mode in Envision in section 4.3: how we
implemented it and what are its theoretical benefits.

4.1 intermediate representation

Envision is a compiled language, and the autodiff construct is a first
class citizen of the language. This allows for the autodifferentiation to
be implemented directly over a suitable Intermediate Representation
(IR) at compile time, where frameworks that add autodifferentiation
capabilities to a language usually rely on operator overloading (e. g.
torch.autograd for Python [19]), and work at runtime.

We review the two intermediate representations that matter from
our work point of view: ADSL, where the differentiation happen, and
Rex, the lowest representation before Intermediate Language (IL), the
assembly language for the .NET suit which is the target of the Envi-
sion compiler. Rex matters to us as this the representation where we
implement static memory analysis.

4.1.1 ADSL

Automatically Differentiable Sub-Language (ADSL) is a low level rep-
resentation designed to be AD-closed, i. e. the adjoint of an ADSL
program is an ADSL program.

4.1.1.1 Primitives

Without delving too far into the precise specifications of ADSL, we
highlight the main constructs of the language. An ADSL program
is a sequence of variable assignments, possibly destructuring tuples,
and a final value, very much akin to a Wengert list [3]. Its primitives
include usual arithmetic operations, calls to external process (which
are ADSL programs obtained from Envision functions), and impor-
tantly control flow operators: conditionals and loops.

For a more in-depth description of how to differentiate an ADSL-
like language, we refer the reader to Don’t Unroll Adjoint[11] which

11

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

4.1 intermediate representation 12

describes a very similar method to what Envision implements. Here
we only add some precisions to the way loops are handled.

4.1.1.2 Implicit Checkpointing

Loops have two functions in ADSL. They may produce a table with
the same shape as the one being looped on ; this happens if the body
of the loop returns a value. They may pass values between iterations,
through the use of state variables which persist across iterations – this
may be used for instance to compute the sum of values in the table.

When no state variable is present, differentiating a loop is simple
and amounts to differentiating the body independently at each itera-
tion (this produce an adjoint table for every table that the primal loop
produces). When a state variable is present, a tape is created and the
successive values which the state holds during iterations are dumped
onto it.

To understand why, consider the simple case where a loop accu-
mulates a single state s over a table T which values are ignored. That
is, s holds successively the values s0, f(s0), f(f(s0)), . . ., for some
non-linear f. Unrolling the loop, the program amounts to Program 1a
(here we assume that T has size 5). The adjoint of this program writes
as Program 1b. Notice how we require to have access to each inter-
mediary values of s. As such, the reverse pass is prefaced by a taping
pass where these intermediary values are computed and stored.

However, the non state variables in the loop are not stored. This
means that we perform primal computations both in the taping pass
and in the accumulation phase of the reverse pass. This is an in-
stance of checkpointing (see subsection 2.1.2), characterized by the
compute/store trade-off : we essentially double the computational
load, but save on some memory. We will see in subsection 4.3.2 that
we can leverage this mechanism to construct degenerated Envision
examples that add more than a constant factor of overhead.

4.1.1.3 Optimization

The Envision compiler relies on one main mechanism to optimize
the ADSL code produced by autodifferentiation, which is dead code
elimination. The initial program computes the adjoint of all variables,
however all adjoints that are not involved in the computation of the
adjoints of the parameters are subsequently removed, e. g. the ad-
joints of constants.

4.1.2 Rex

ADSL is further compiled down to an even lower level language
called Rex. The specifications of Rex are irrelevant for our work. The

4.2 partial views of parameters 13

(a) The primal loop

s1 <- f(s0)

s2 <- f(s1)

s3 <- f(s2)

s4 <- f(s3)

s5 <- f(s4)

s5

(b) The adjoint loop

s1 <- f(s0)

s2 <- f(s1)

s3 <- f(s2)

s4 <- f(s3)

s5 <- f(s4)

s′5 <- 1

s′4 <- s′5 * f(s′4)

s′3 <- s′4 * f(s′3)

s′2 <- s′3 * f(s′2)

s′1 <- s′2 * f(s′1)

s′0 <- s′1 * f(s′0)

s5, s′0

Program 1: Unrolling the loop in ADSL.

only speficity that matters to us is that the memory required by a
Rex script is predictibly bounded. For instance, there are no while

loop primitive. This enabled us to write a memory analyzer which
statically produces an upper bound on the required memory.

This upper bound is tight enough that we can use it in lieue of other
solutions which measure the actual memory used during execution.
The memory bounds that we will describe later in the experiments
chapter are produced by this analyzer.

4.2 partial views of parameters

Data used at Lokad, and in supply chain problems in general, is of-
ten categorical. Accordingly, the models that are learnt often involve
categorical parameters.

For instance, we may want to learn the average price at which
sells, respectively, t-shirts, dresses and hats. Let us ignore the fact
that those quantities can be computed easily with a closed form for-
mula, and instead suppose we want to learn them as a parameter
α = (αshirts,αdress,αhat) of our model, using data such as in Table 1.

date item price

01/01/2022 shirt 20$

01/01/2022 shirt 22$

02/01/2022 hat 15$

Table 1: Sample sell history

4.3 forward mode 14

Machine learning practitioneers would tend to automatically en-
code the Item column with one hot vectors φitem. Then our stochas-
tic loss at a single observation i may be computed as (φitem(i)Tα−

price(i))2, if for instance the quadratic loss is chosen.

However, Envision is more clever, following the idea from Peseux
et al.[21]. Instead of one-hot encodings, Envision statically infers the
relation between α and the Item column. We write our loss as (α−

price)2, and the compiler automatically selects the correct coordinate
of α.

Although mathematically equivalent, the nuance is more than anec-
dotical, the loss is now 1-dimensional instead of 3-dimensional. We
will see in chapter 6 how this is critical for forward gradients, which
we will show to suffer from high dimensionality. Moreover, if we use
optimizers which accumulate gradients, such as Adam, the one-hot
encoding approach would pollute the moments with spurious zeros.

4.3 forward mode

4.3.1 Implementing forward mode AD

The implementation of forward mode is essentially trivial. Each ADSL
variable is associated a dual variable which holds its tangent, akin to
dual numbers [8]. The only subtlety lies in interacting well with dead
code elimination (see subsubsection 4.1.1.3).

When loading a non-parameter value to a variable, such as a con-
stant, one may be tempted to initialize its dual variable to 0. This
would be mathematically correct, but the subsequent dead code elim-
ination passes would not be able to detect that this tangent variable
may be erased, nor that some of the following computations involv-
ing this variable may be erased. Instead, we keep a data structure of
variables which we have created a tangent variable for, and we derive
the tangent of each ADSL primitive according to the available tangent
variables. In other words, we remember which tangents are null, and
simplify computations accordingly.

To illustrate this point, consider the different derivations in Pro-
gram 2. Program 2b does not appear to have unused variables, while
mathematically it could be simplified to Program 2c.

4.3.2 Proof of Concept for Memory Optimizations

The purpose of this section is to illustrate the benefits from using
forward mode AD in Envision on some simple programs. We exhibit
a sequence of programs where forward mode uses (asymptotically)
arbitrarily less memory than reverse mode AD, and runs in arbitrarily
less time. This serves both as an illustration of the shortcomings of

4.3 forward mode 15

(a) The primal program

$0 <- 3.000

$1 <- 4.000

$2 <- load x

$3 <- $1 * $2

$4 <- $0 * $3

loss $4

(b) Naive tangent program

$0 <- 3.000

$0′ <- 0.000

$1 <- 4.000

$1′ <- 0.000

$2 <- load x

$2′ <- load x′

$3 <- $1 * $2

$5 <- $1′ * $2

$6 <- $1 * $2′

$3′ <- $5 + $6

$4 <- $0 * $3

$7 <- $0′ * $3

$8 <- $0 * $3′

$4′ <- $7 + $8

loss $4

loss′ $4′

(c) Optimized tangent program

$0 <- 3.000

$1 <- 4.000

$2 <- load x

$2′ <- load x′

$3 <- $1 * $2

$3′ <- $1 * 2′

$4 <- $0 * $3

$4′ <- $0 * $3′

loss $4

loss′ $4′

Program 2: Naive and optimized derivation of a simple ADSL program that
computes f(x) = 3 ∗ (4 ∗ x).

4.3 forward mode 16

def T(n):

return range(10)

def F0(x):

return x**2

def F(n):

if n == 0:

return F0

Fn−1 = F(n - 1)

def Fn(x):

for _ in T(n):

x = Fn−1(x)

return x

return Fn

table T1 = extend.range(10)

table T2 = extend.range(10)

table T3 = extend.range(10)

def autodiff pure F0(x:

number) with↪→

return x^2

def autodiff pure F3(x:

number) with↪→

each T3 scan auto

keep x

each T2 scan auto

keep x

each T1 scan

auto↪→

keep x

x = F0(x)

return x

Program 3: The Fn program in Python and in Envision.

reverse mode AD seen in section 2.1, and as a proof of concept that
Envision is expressive enough to create such degenerated cases.

From 4.1.1.2 we know that Envision may trade memory for per-
formance. We show that this does not prevent bloating either perfor-
mance nor memory. Consider the program F0 which takes an input
variable x and returns f(x), where f is non-linear, say f(x) = x2. We
will define a family of programs Fn with F0 as their building block.

definition 2 : Fn program

Let Tn be some table of size Sn. We define Fn recursively by calling
Fn−1 for each item of Tn, see Program 3.

Such program is accepted as differentiable in Envision (note the
autodiff pure keywords), and compiles in ADSL (and later in Rex)
to nested loops. How is it differentiated ?

the differentiated program F ′n Since F0 (and inductively, all
Fn) is non-linear (in the analytic sense), Reverse Mode AD needs to
know a to compute the adjoint of b = Fn−1(a), which writes a′ =

b′ * F′n−1(a). At this point, checkpointing occurs: instead of starting
over to compute a, a table T ′n is created during the forward pass,
where are stored the intermediate variables x, Fn−1(x), . . . , F

◦Sn−1
n−1 (x).

From a high level point of view, this yields Program 4.

4.3 forward mode 17

def F′0(x):

return 2 * x

def F′(n):

if n == 0:

return F′0

Fn−1 = F(n - 1)

F′n−1 = F′(n - 1)

def F′n(x):

Forward pass +

taping↪→

T′n = []

for _ in T(n):

T′n.append(x)

x = Fn−1(x)

Reverse pass

x′ = 1

for x in reverse(T′n):

x′ = x′ * F′n−1(x)

return x′

return F′n

Program 4: The differentiated F ′n program, written in pseudo-Python.

4.3 forward mode 18

Notice that F ′n yields recursive calls to both Fn−1 and F ′n−1. This
will explain the bloating of the amount of computations : forward
computations are made several times. The memory overhead simply
comes from the checkpointing mechanism which creates T ′n. We can
represent the full program (without the recursive abstraction) as a
temporal computation graph, à la Siskind and Pearlmutter [23], see
Figure 2. Notice the fractal structure.

Figure 2: Derivative of the Fn program at n = 3. Green arrows show the
flow of data, blue (resp. red) arrows show the flow of forward
computations (resp. backward computations).

We now prove the following property, which quantifies the mem-
ory and computation overhead from reverse mode differentiation.
The amount of computation is expressed in number of calls to F0.
The memory overhead bound assumes that the compiler is able to
perfectly reuse the allocated space (e. g. T ′n is allocated only once),
which is the best case scenario.

property 1 : overhead of F ′n

The F ′n program has the following costs

a. O(n
∏
i Si) calls to F0 and F ′0

b. O(
∑
i Si) memory overhead

Proof. Let Cn be the number of calls to F0 and F ′0 of Fn, Dn that of
F ′n. The following relation holds for n > 1{

Cn = SnCn−1

Dn = SnCn−1 + SnDn−1

Let Xn =

(
Cn

Dn

)
. We readily have

Xn = (
∏
i

Si)

(
1 0

1 1

)n(
1

1

)
= (
∏
i

Si)

(
1 0

n 1

)(
1

1

)

4.3 forward mode 19

This is enough to conclude.

The costs from Property 1 should be compared with those of the
primal program, which are

a. C = O(
∏
i Si) calls to F0

b. D = O(1) memory overhead

Hence in the worst case scenario where all tables have size 2, re-
verse mode adds a logarithmic factor log(C) to both the number of
computations and the memory allocations. On the contrary, forward
mode AD, used for computing forward gradients, adds only a con-
stant factor to both.

5
O P T I M I Z AT I O N W I T H F O RWA R D G R A D I E N T S

In this chapter, we study the mathematical implications underpinning
the use of forward gradients, rather than true gradients, in standard
optimization. section 5.1 focuses on the choice of distribution for the
initial tangent ; we exhibit a best distribution according to the con-
straints from Baydin et al., then show that those constraints can be
relaxed, which notably yields a more general family of best distribu-
tions. Finally, the important section 5.2 features evidence that opti-
mization with forward gradient should get challenging with higher
dimensional functions.

5.1 choice of tangent law

Forward gradients are parametrized by a choice of direction of
projection for the real gradient. To compute the forward gradient g
at θ, a random direction v is sampled and used as the tangent. For-
ward mode AD then yields the jacobian vector product ∇f(θ) · v, and

finally the forward gradient is computed as g(θ) ∆= (∇f(θ) · v)v. We
naturally refer to the distribution for v as the tangent law, and write pv.
From the tangent law properties, it is natural –though not necessary–
that the vi should be i. i. d., in which case we note the common distri-
bution pv.

In the original forward gradient paper, Baydin et al. use pv =

N(0n, In), and note that any distribution that satisfies the tangent
law properties yields valid forward gradients, in the sense that they
are unbiased estimators of the gradient. This opens the door to other
choices of tangent laws – notably one that minimizes variance.

definition 3 : minimal tangent law

We call minimal tangent law, and we write pmin
v , the centered Rademacher

law

v ∼ Rad(0.5)⇔

v = 1 w. p. 0.5

v = −1 w. p. 0.5

lemma 1 : minimally deviating forward gradients

Let f : Rn → R be a function of n real variables (θ1, . . . , θn).
Among the tangent laws that satisfy the tangent law properties,
the choice pv = pmin

v is the minimizer for the forward gradient g of
the mean squared deviation E

[
||g(θ) −∇f(θ)||2

]
.

20

5.1 choice of tangent law 21

Proof. After expansion of the mean squared deviation, this amounts
to minimizing each E

[
(gi(θ) −∇fi)2

]
. From the bias-variance prop-

erty, and because the forward gradient is unbiased, this in turns asks
to minimize V[gi(θ)]. The mean E[gi(θ)] being fixed (equal to ∇fi),
minimizing the variance amounts to minimizing each

E
[
gi(θ)

2
]
= E

[
(∇f · v)2v2i

]
=

(
∂f

∂θi

)2
E[v4i] +

∑
j6=i

(
∂f

∂θj

)2
E
[
v2i v

2
j

]
+ 2
∑
k<l

(
∂f

∂θk

)(
∂f

∂θl

)
E
[
v2i vkvl

]
=

(
∂f

∂θi

)2
(1+ V[v2i]) +

∑
j6=i

(
∂f

∂θj

)2
E
[
v2i v

2
j

]
=

(
∂f

∂θi

)2
V[v2i] + ||∇f||2

where we used the following properties

1. E
[
v2i vkvl

]
= 0 when k 6= l. Indeed the vj are independent and

centered (from Equation 1), and at least one of vk, vl appears
alone in v2i vkvl.

2. E[v2i v
2
j] = 1 when i 6= j (this follows again from Equation 1).

3. E[v4i] = 1+ V[v2i].

Finally, V[v2i] is minimum at 0, which is feasible when vi takes
value in {−a,a} for some a ∈ R. We obtain the minimal deviation con-
ditions

vi ⊥⊥ vj ∀i 6= j

E(vi) = 0 ∀i
V(vi) = 1 ∀i
V(v2i) = 0 ∀i

(2a)

(2b)

(2c)

(2d)

They are met only when the vi are independent Rademacher vari-
ables with parameter 0.5, i. e. pv = pmin

v .

Note that in the course of the proof we also found an explicit value
for the mean squared deviation. The following property makes it ex-
plicit (see the short proof in the appendix).

property 2

5.1 choice of tangent law 22

The mean squared deviation of the minimally deviating forward
gradients is

E
[
‖∇f(θ) − g(θ)‖2

]
= (n− 1) ‖∇f(θ)‖2

At this point, one may worry that the minimal tangent law that
we found is anisotropic, while it is not obvious where the loss of
isotropy happened. It is in fact the tangent law properties that im-
plicitly assumes the anisotropic choice of canonical basis. Indeed, if
the marginals of v according to some orthogonal basis b respect Equa-
tion 1, the marginals according to some other orthogonal basis b ′ may
not.

The tangent law properties can however be readily relaxed to an
isotropic formulation. This the purpose of the following definition,
and its associated theorem which extends Theorem 1.

definition 4 : extended tangent law properties

We say that the random vector w on Rn satisfies the extended tan-
gent law properties when there exists a random variable q ∈ On over
the orthogonal group of Rn, and v that satisfies Equation 1, such
that w = q · v.

Does the extended tangent law property add any useful distri-
bution to the set of available tangent laws ? It arguably does. For
instance, the uniform distibution over the L2-sphere of radius

√
n,

which is not admissible in the formulation of Baydin et al., satisfies
the extended tangent law property. Indeed, it can be seen as the law
of q · v where q is uniform over On (i. e. following the translation in-
variant measure, or Haar measure, over the orthogonal group), and v
follows the minimal tangent law.

theorem 2 : extended forward gradient theorem

Let f : Rn → R, p that satisfies the extended tangent law properties,
and g the forward gradient associated to f and p. Then g(θ) is an
unbiased estimator of ∇f(θ).

Proof. Let w = q · v be the random tangent associated to p (see Defi-
nition 4). We rely on the decomposition

E[g(θ)] =

∫
q∈On

E[g(θ) | q = q]dq

Hence it suffices to show that g(θ) is an unbiased estimator of the
gradient given q. We can simply recycle the proof of Theorem 1 from
“Gradients without Backpropagation”, with a change of basis defined
by q. We have

〈∇f;w〉 = 〈q−1 · ∇f;v〉
〈∇f;w〉w = q · 〈q−1 · ∇f;v〉v

5.2 mistakes in forward gradient descent 23

whence from Theorem 1 we get that q−1g(θ) is an unbiased estimator
of q−1∇f(θ), i. e. that g(θ) is an unbiased estimator of ∇f(θ). This
concludes the proof that E[g(θ) | q = q] = ∇f(θ), and hence proves
the theorem.

Of course, the extended formulation yields an extended family of
minimally deviating forward gradients.

definition 5 : extended minimal tangent laws

Let On be the set of orthogonal automorphism of Rn. The family of
extended minimal tangent laws is described by the random variables
T = q · v where v ∼ pmin

v and q is any random variable over On.

The simplest members of this family are those associated to almost
surely constant q, which are the independent centered Rademacher
marginals associated to each orthogonal basis – see Figure 3. The
uniform distibution over the L2-sphere of radius

√
n also belongs to

the extended minimal tangent laws, and is the minimal tangent law
that is isotropic.

We can furthermore check that all laws in this family are equiva-
lently good (regardless of ∇f), as the mean squared deviation given
by Property 2 is invariant to orthogonal transformations of v, and
equals (n− 1) ‖∇f‖2.

(a) Canonical minimal tangent law. (b) Another minimal tangent law.
Canonical basis is in black, rotated
basis is in turquoise.

Figure 3: Minimally deviating tangent laws in dimension n = 3. Each vertex
has equal probability 1/8.

5.2 mistakes in forward gradient descent

Proofs of convergence for optimizers generally only assume an un-
biased oracle of the gradient of the objective (see for instance Moulines

5.2 mistakes in forward gradient descent 24

and Bach[17] or Défossez et al.[10]) – usually to account for stochastic
data samples. In particular, this means that we keep the same theoreti-
cal guarantees while using forward gradients. However, this does not
account for the intuition that noisier oracles yield harder optimiza-
tion. The goal of this section is to provide a quantitative description
of the added stochasticity that comes from using forward gradients
rather than true gradients.

In this section, we only look at minimally deviating forward gradi-
ents. Not only is the minimal tangent law more convenient to analyze
because of its simple form, but we expect them to yield better opti-
mizations than any other tangent laws.

5.2.1 The Curse of Dimensionality

The purpose of this section is to prove Theorem 3, which shows
that the sign of the forward gradient correlates with the sign of the
true gradient only on o(n) dimensions more than what pure chance
accounts for.

First, however, we provide two reasons we wish the sign of for-
ward gradients to approximate well the sign of the true gradient. They
both stem from the remark that the forward gradient associated to a
minimally deviating tangent law has a distinct structure, namely all
its coefficients share the same magnitude. What consequence does
this structure have with different optimizers ?

Consider first the case of Clipped SGD. Clipped SGD is a regular-
ized version of SGD, which enforces an upperbound on the magni-
tude of the coordinates: in lieu of the gradient ∇f(θ), clipped SGD
uses its projection onto the ball {θ | ‖θ‖∞ 6 1‖}. That is, for coeffi-
cients that have a magnitude greater than 1, their sign is used instead.
When using Clipped SGD with forward gradients, either all coeffi-
cients are transformed into their sign, or none are. Thus, when the
gradient is large enough, all coefficients have too large a magnitude,
Clipped SGD with forward gradients amouts to sign descent.

A similar mechanism can be seen with Adam. Recall from chapter 3

the decoupled interpretation of Adam, as coordinate-wise weighted
sign descent. With forward gradients, the weights are in fact equal
across coordinates, whence, up to this scaling factor, the optimization
process amounts to sign descent.

theorem 3

5.2 mistakes in forward gradient descent 25

The expected number of dimensions where the minimally deviat-
ing forward gradients has the same sign as the true gradient is
upper bounded by

n

2
+

√
n

2π
+O(

1√
n
)

Proof. Let us notice first that the forward gradient g = (∇f · v)v al-
ways has a positive correlation with the true gradient:

∇f · g = (∇f · v)2 > 0

In other words, the forward gradient changes the sign of v if neces-
sary, so that it correlates with ∇f (it also adds a scaling factor which
is irrelevant for the theorem).

Now, first, let us assume that ∇f ∈ {−1, 1}n. Let us note P the ex-
pected number of dimensions with the same sign as the true gradient,
and N that of dimensions with the opposite sign. We have
P+N = n

P−N = E

[
sign(

∑
i

∇fivi)
∑
i

sign(∇fi)vi

]
= E

[
|
∑
i

∇fivi|

](3a)

(3b)

By symmetry, E [|
∑
i∇fivi|] is E[|

∑
i vi|]. This is the well known

problem of estimating how far away from 0 does a n-step random
walk goes. The derivation is detailed in Appendix A, see section A.2,

and gives E[|
∑
i vi|] =

√
2n
π +O(1√

n
). Eventually, we get

P =
n

2
+
1

2
E[|
∑
i

vi|] =
n

2
+

√
n

2π
+O(

1√
n
)

Remains to show that this holds as an upper bound for general ∇f.
This is readily obtained, as Equation 3 now writes

P+N = n

P−N = E

[
sign(

∑
i

∇fivi)
∑
i

sign(∇fi)vi

]

where we have an upper bound E [sign(
∑
i∇fivi)

∑
i sign(∇fi)vi] 6

E [|
∑
i sign(∇fi)vi|] where we previously had an equality.

Note that a pure random walk in Rn would get right on average n2
dimensions.

5.2.2 Forward Gradient for Linear Objectives

The essence of first-order gradient descent methonds is to use at θ
the best linear approximation of the objective and move accordingly.

5.2 mistakes in forward gradient descent 26

Here we provide analysis of the behaviour of forward gradients when
the linear approximation is exact, i. e. for a linear objective. Its ability –
or lack there of – to degenerate the objective to −∞ will give insights
as to how it will fair against reverse mode gradients on more complex
objectives.

In the following, we let f(θ) ∆= µT · θ for some µ ∈ Rn.

5.2.2.1 SGD

The update rule for vanilla SGD writes here{
δθt = (vTt ·µ)vt
θt+1 = θt − δθt

where we assumed a learning rate of 1 for simplicity, and where the
(vs)s=1,2,... are independent random variables with law pmin

v .
We can compute the mean gain to the objective of a single SGD

step

E [f(θt+1) − f(θt)] = −E[(vTt ·µ)2]
= −µT · Σ ·µ
= −‖µ‖2

where the tangent covariance Σ ∆
= E[v · vT] is In (following the tan-

gent law properties).
This is the same expected gain as with regular reverse-mode SGD,

and indeed Figure 4a shows similar asymptotic evolution of the ob-
jective. Yet in high dimensions, we showed in subsection 5.2.1 that on
average the forward gradient gets only o(n) more than half directions
correct. How does it manage to keep up with the always-correct true
gradient ? Simply, forward SGD takes bigger steps.

Indeed consider the following simple derivation when v ∼ pmin
v

E
[∥∥(∇fT · v)v∥∥2] = nE

[
(∇fT · v)2

]
= n‖∇f‖2

Whereas SGD in reverse mode takes step of squared norm size ‖∇f‖2,
forward adds on average a factor equal to the dimension. While this
has no effect for the simple linear objective, this may slow down or
prevent convergence on more chaotic problems. As seen in Figure 4b,
the parameter θ may wander far from the gradient direction.

Note that in fact the derivation above remains valid if the gradient
has only constant direction with possibly varying norm. That is, in a
region where the isopleths are plane and parallel, we expect forward
gradient descent and true gradient descent to perform equally well.

5.2 mistakes in forward gradient descent 27

0 500 1000

Iteration

V
al

ue
of

th
e

ob
je

ct
iv

e
True gradients
Forward gradients

(a) Evolution of the objective.

θ0

θ
1

True gradients
Forward gradients

(b) Evolution of the first two coordi-
nates of θ

Figure 4: SGD with linear objective, with forward gradients and true gradi-
ents. 5 iterations of forward gradient descent are represented.

5.2.2.2 Adam

Adam with constant gradient ∇f = µ amounts to sign descent (up
to the Adam’s ε), i. e. δθi = sign(µi). The speed of divergence in this
case is characterized by

δθT ·µ = ‖µ‖1

How does Adam with forward gradients compare ? The update
rule for Adam writes as the following (we use pt for the second mo-
ment of Adam to not conflict with the notation for the initial forward
tangent v).

mt = (1−β1)

t∑
s=1

βt−s1 (vTt ·µ)vt

pt = (1−β2)

t∑
s=1

βt−s2 (vTt ·µ)2

δθt,i =

√
1−βt2

1−βt1

mt,i√
pt,i + ε

θt+1 = θt − δθt

where we assumed a learning rate of 1 for simplicity, and where the
vi are independent random variables with law pmin

v . Typically, β1
and β2 are close to 1. To derive analytical results, we will consider
the degenerated case where they are both 1, whence

δθt,i =
(vTt ·µ)vt,i√

(vTt ·µ)2
= sign(vTt ·µ)vt,i

5.2 mistakes in forward gradient descent 28

(we also remove the ε as we did in reverse mode).
Now we can compute the associated speed of divergence:

E[(δθt ·µ)] = E[sign(vTt ·µ)(vTt ·µ)]
= E[

∣∣vTt ·µ∣∣]
In all generality, we can only bound this coefficient by the one ob-

tained with true gradients: E[(δθt ·µ)] 6 ‖µ‖1. However, for most µ,
this bound is very coarse, and there is an additional factor of degra-
dation proportional to the dimension.

In particular, when µ ∈ {−1, 1}n, we get a O(
√
n) speed of diver-

gence (see the derivation in the appendix), while reverse mode gives
a O(n) speed of divergence. We find here another ‘curse of dimen-
sion’: as the dimension of the parameter grows, we expect forward
gradients to perform increasingly worse than true gradients.

6
E X P E R I M E N T S

We conducted two series of experiments.
The first series, presented in section 6.1, involves so called test func-

tions. This gives us an idea of the behaviour of optimization with for-
ward gradients that is somewhat generalizable to many domains of
application.

The second series, which we present in section 6.2, was conducted
on Envision scripts used in production at Lokad. They give a very
precise description of the applicability of forward gradients for the
Lokad use case, but may not translate to other domains. In this sec-
ond series, we are not only interested in convergence, but also in
computational metrics, i. e. memory load and speed of execution.

6.1 experiments on test functions

The litterature provides an extensive body of test functions meant to
challenge and evaluate new optimization algorithms, see for instance
[14] (Appendix B) and [26] for a curated list of such function, or [12]
for a comprehensive survey. Baydin et al. test in [5] two such functions
– Beale and Rosenbrock – against forward gradients, with vanilla SGD,
and show positive results. However both functions are 2-dimensional,
which, according to our work in subsection 5.2.1, should not make
apparent the potential pitfalls of forward gradients.

Thus, this section is meant to provide additional ‘unit testing’ ex-
periments against forward gradients. It is not trivial to conduct a
meaningful comparison experiment between optimization algorithms.
We did our best to follow the recommendations from “Best practices
for comparing optimization algorithms”[6]. In particular, we use di-
verse test functions and we test convergence from several starting
points.

6.1.1 Specification

Here we detail our experimental protocol.

6.1.1.1 Functions used

Out of reproducibility concerns, we brought Beale and Rosenbrock in
our experiments. Note that Rosenbrock has a definition for arbitrary
dimensions, although it was used only in dimension 2 in [5] (known
then as the banana function).

29

6.1 experiments on test functions 30

For convergence plots, we also use the simple sphere function, and
the hyperellipsoid function, which are both separable. Separability
ensures the problem should be trivial for simple gradient descent,
while forward gradient descent may still struggle in high dimensions.
The hyperellipsoid function is similar to the sphere function but is
highly anisotropic. This may be relevant to test, considering the shape
of the minimal tangent law.

fSphere(x) =

D∑
i=1

x2i

fEllipsoid(x) =

D∑
i=1

ix2i

Mainly for illustration purposes, we add our own function that we
call the spiral function, and is defined as

fSpiral(x,y, z) = log(1+ z2 + (x− sin(z))2 + (y− cos(z))2)

The spiral function is three-dimensional, which is the highest that
we can reasonnably represent the path of θ during optimization. The
figure on the title page is a trajectory plot of true gradient descents
compared to forward gradient descent for the spiral test function.

Our main concern remains robustness of results, which demands
a large set of test functions. We used the collection implemented by
Thevenot[24], which regroup 78 test functions well known in the lit-
terature, and include convex, non-convex, separable, non-separable,
multimodal and non-multimodal functions.

For each of those functions that are defined in arbitrary dimension,
we test them in dimensions 2, 10 and 100.

6.1.1.2 Optimizers used

We chose to test SGD, Clipped SGD, Adam and Adabelief. SGD yields
the most bare view of the behaviour of forward gradients. However
SGD is sensitive to variations of the learning rate, and prone to di-
verge, and hence we also include Clipped SGD as a regularized ver-
sion of SGD. Adam is maybe the most popular optimizer in machine
learning. Adabelief appears to exhibit better robustness to gradient
noise than Adam, which is of course highly desirable with forward
gradients.

For each such optimizer, we test a version that uses forward gradi-
ents, and one that uses true gradients.

6.1 experiments on test functions 31

We keep a fixed learning rate equal to 0.01. In Envision, this is the
learning rate that is used under the hood, and the design choice of
the language is to not allow the supply chain scienctists to change it. In
other words, we voluntarily restrict any hyperparameter optimization
to match the way it is restricted in Envision.

6.1.1.3 Reproducibility

Our ‘unit testing’ experiments were done in Python, which is more
convenient that Envision, and is available to anyone. Our implemen-
tation and experimentations are publicy available on Github, it relies
on the autograd library [15] for performing autodifferentiation.

6.1.2 Results

Here, we are only interested in the performance of the optimizers
with respect to the number of gradient evaluation. In particular, we
do not compare the CPU time of execution, nor the memory usage
as we make no attempt in our implementation to optimize one or the
other. Those metrics will be evaluated in 6.2 where our Envision im-
plementation is used.

trajectory and convergence plots We first start by pro-
viding some trajectory and convergence plots. They are not the most
practical, as they do not allow comparisons across test functions, but
nevertheless can be useful to form an idea of how optimizers behave.

Figure 5 reproduces the results from Baydin et al. with several ini-
tializations for θ. It can be seen that it depends on the initialization
wether true gradient descent or forward gradient descent performs
better, although forward gradients are never but marginally better.

We can furthermore see how the convergence plots evolve as the
function dimension grows, which we illustrate with the ellipsoid func-
tion in Figure 6. We can see that forward SGD does not seem to suf-
fer from dimensionality. Indeed for low enough learning rates, the
hyperellipsoid isopleths look straight and parallel on the path of gra-
dient descent, which we showed in subsubsection 5.2.2.1 to be a case
where forward gradients can readily replace true gradients. However,
the same does not hold for Adam which displays convincingly how
forward gradients struggle with high dimensionality.

performance profile Beiranvand, Hare, and Lucet[6] recom-
mend using performance profiles to report optimization experiments
in a single graphic.

Let P be a set of problems (here test functions), and S a set of
optimizers. Suppose our experiments produce a fixed-target metric
tp,s for each problem p and solver s, here we use the number of

https://github.com/gbelouze/forward-gradient
https://github.com/HIPS/autograd

6.1 experiments on test functions 32

(a) Beale trajectory plot. (b) Beale convergence plots for each initialization.

(c) Banana trajectory plot. (d) Banana convergence plots for each initialization.

Figure 5: Vanilla gradient descent for the Beale and Banana test functions,
with 5 random initializations.

function evaluation to reach the minimum up to ε = 0.1. Then we
define the performance ratio

rp,s =

tp,s

min{tp,s | s∈S} if convergence test passed,

∞ otherwise

6.1 experiments on test functions 33

(a) Dimension 2

(b) Dimension 10

(c) Dimension 100

Figure 6: Evolution of SGD (left half) and Adam (right half) with the hyper-
ellipsoid of dimension 2, 10 and 100.

From this we derive the performance profile, which is a function of
τ > 1 for each solver :

ρs(τ) =
1

|P|
size{p ∈ P | rp,s 6 τ}

That is, ρs(τ) is the proportion of problems where solver s is less than
a factor τ away from the best solver.

6.2 envision production scripts 34

In particular, ρs(1) is the portion of time that s was the best solver,
and ρ(∞) is the proportion that the solver managed to solve. In gen-
eral, we are looking for solvers with consistently high ρ.

Performance profiles are convenient in that they display several
information in a single graphic. However they treat all problems uni-
formly. In our case, we also would like to know how performance
evolves with higher dimensionality. Thus, we provide in Figure 7

three profiles taken from problems with three different dimensions,
2, 10 and 100.

Figure 7: Performance profiles across sets of problems with fixed dimension-
ality.

Although we should be prudent with conclusions about 2-by-2
comparisons with performance profiles, we can observe the effect of
higher dimensions, especially in the region τ 6 10. That is, in di-
mension 100, any optimizer that uses forward gradients are almost
always at least 10 times slower than the best optimizer that uses true
gradient (which almost always is Adabelief). Note than on top of this,
all optimizers converge less often in high dimensions (the SGD based
optimizers seem to be the most impacted).

Moreover, we can see that for forward gradient based optimizers,
the derivatives of the performance profile in 1 gets flatter as the di-
mension increases ρ ′(1) ≈ 0. This means that not only are they almost
never optimal (as ρ(1) ≈ 0), but they also become poor approxima-
tors of the optimal solver in high dimensions. In contrast, Adam with
true gradients has often good performance, albeit never optimal.

6.2 envision production scripts

The Envision language is developped internally at Lokad and is un-
available to the general public. As such, we had straightforward ac-
cess to all the scripts ever written in Envision, and the data they use.
This enabled us to conduct the same experiments as in section 6.1 but

6.2 envision production scripts 35

using the actual production scripts instead of test functions.

Lokad provides to the supply chain scientists frozen scripts called
templates which implement a certain supply chain model. An instance
of the template corresponds to choosing hyperparameters for the
model and feeding data to it.

For a given template, there can be up to dozens of instances, which
we treat as separate problems in our experiments. However note that
the impact of using forward gradients is somewhat consistent across
instances of a same template. Notably, we will see that forward gradi-
ent descent fails to converge on many problems, but these correspond
to only a handful of models. Similarly, there are several instances
where a lower loss is reached with forward gradients, but they all
come from the same instance, i. e. the same underlying loss function.

6.2.1 A typical supply chain model in Envision

Our goal is not to understand precisely what model each script is
implementing. Nevertheless, it may be of interest to the reader to
have a broad understanding of the typical structure of the supply
chain problems.

At Lokad, supply chain tasks often amounts to

1. Forecasting, e. g. what will the demand look like next year

2. Produce recommendations for retail prices, stocks, etc.

Autodifferentiation is used only for the first step. We describe briefly
the simplest model used, called the forecaster.

Suppose our company sells different models of chairs c1, . . . , cm.
Using the available history of sells, the forecaster learns K profiles pk,
with K� m. A profile is a vector of size 52, which represent demand
levels during each week of the year. The forecaster also learns, for
each chair model, a trend, a mean level, and a sparse profile-selection
vector s of size K. That is, we say that the demand of chair i at time t
is

trend · t+ level + sTp(t)

All these coefficients are learned jointly through autodifferentiation.

One significant subtelty is that although the total number of param-
eters may be very large (as m often is), the loss is only ever computed
at a sell history observation, of the form ‘x chairs of model ci were
sold at week w’. Such stochastic loss involves only a handful more
than 52 ·K parameters, and this remains true for all other forecasting
models used at Lokad.

6.2 envision production scripts 36

From the work summarized in section 4.2, this means that the stochas-
tic loss can be considered to have a much lower dimension than the
full loss. This is especially relevant for forward gradients which we
showed to work better in lower dimensions. While we found produc-
tion scripts which had as high as 5M parameters, the stochastic loss
never exceeded 530 parameters.

6.2.2 Convergence

Production scripts are fixed-cost problems, i. e. they are allowed a
fixed number of epochs to minimize a loss. In such case, performance
profiles as used in section 6.1 are not suitable. Instead, we display an
accuracy profile, which again is recommended by Beiranvand, Hare,
and Lucet[6]. Below we motivate and define what accuracy profiles
are.

A natural measure for the quality of an algorithmic output is f(x̄)−
f(x∗), where x̄ is the best solution found by the algorithm, and x∗

is one optimal point. We can “normalize” this measure by the start-
ing accuracy, so that it makes some sense to compare them across
problems, with f(x̄)−f(x∗)

f(x0)−f(x∗)
. Finally, the logarithm of this quantity is

generally prefered, which we note fp,s
acc for solver s and problem p.

This accuracy forms the basis for accuracy profiles – however to be
computed it requires to know the optimal solution, which is of course
unavailable in production scripts. Instead, we will replace x∗ by the
best value found across solvers, and impose an upper bound on facc
to avoid artefacts stemming from the best solver appearing exactly
optimal. That is, we define

γp,s =

−fp,s
acc, if −fp,s

acc 6M

M, otherwise

and we choose M = 10.
Then in the same manner we defined performance profiled, we

define the accuracy function for solver s

Rs(τ) =
1

|P|
size{γp,s | γp,s > τ, p ∈ P}

Figure 8 shows such accuracy profiles for the Envision scripts. It
gives evidence that forward optimizers reach hardly ever the best loss
(they all tend to 0 when the accuracy cut-off tends to M). Moreover,
the profile of the AdaBelief optimizer (with true gradients) stay close
to 1 for almost all τ. In other words, even when it is not optimal,
AdaBelief reaches a good enough approximation of the best loss.

On a side note, even though this was not the goal, our experiments
showed that Lokad could prefer AdaBelief to Adam, which is the

6.2 envision production scripts 37

Figure 8: Accuracy profiles for the Envision scripts at Lokad

current default optimizer. In fact, we also observed that not only is
Adabelief almost never worse than Adam, it also typically converges
faster.

6.2.3 Computational costs

Remember our end goal: does forward mode use less memory and
run faster than reverse mode ? We measured the computational over-
head of both methods, and report here the results.

memory footprint Our work presented in subsection 4.1.2 al-
lows to measure a tight upper bound on the memory load of an au-
todifferentiated piece of code. Figure 9 displays the ratio of memory
usage for every production scripts. Although it can be observed that
forward mode is never worse than reverse mode, the gains are hardly
ever noticeable. The degenerated cases identified in Figure 2 simply
do not occur in the wild.

Figure 9: Memory comparison between forward and reverse mode AD.

6.3 batch mode 38

cpu time The same comparison can be done for CPU time, which
we display in Figure 10. At first, it appears that forward mode is not
consistently faster than reverse mode. There are in fact two factors
at play: the execution time for the autodifferentiated loss function,
but also the sampling time for the initial tangent, for forward gradi-
ents. When the loss function is fast to execute, and its dimension is
sufficiently high, the sampling overhead can take over.

This is what happens in the cluster with a time ratio > 1, which
actually stems from a single template; meaning that it is only a sin-
gle model that forward gradients take more time on. Moreover, there
are optimization opportunities to sample much faster that we have
not implemented – notably, we can trade random number generation
time for the quality of randomness, which we do not need to be very
high.

Figure 10: Runtime comparison between forward and reverse mode AD.

6.3 batch mode

We showed, both theoretically, and experimentally, that forward gra-
dients are poor approximators, albeit unbiased, of true gradients. We
could sample at each step several forward gradients and use the sam-
ple mean instead, to obtain an estimator that is more narrowly cen-
tered around the true gradient; but of course this is non sense, as we
would lose all computational benefits from using forward mode.

However, this idea can be recycled in conjonction with batch mode:
a batch of forward gradients is a better approximators of the batch
gradient than a single forward gradient of a single gradient. We get a
better approximator for free.

Unfortunately, our experiments on Envision scripts using batches
were unconclusive. We identified two shortcomings:

6.3 batch mode 39

1. Reasonable batch sizes are typically too low (the convergence of
the batch mean to the true gradient is proportional to the root
of the batch size).

2. More importantly, two observations typically share only a hand-
ful of parameters (recall the last paragraph of subsection 6.2.1).
In such case, batch mode provides barely any benefits.

Still, we believe that further exploratory work should be conducted.
In particular, in the specific case of Envision, SIMD parallelisation
may allow to obtain 8 forward gradient samples at each step instead
of 1, for free.

7
C O N C L U S I O N

Our work has exposed both theoretical and experimental short-
comings of forward gradients. Specifically, we identified high dimen-
sional settings as an issue, and confirmed this result with extensive
experiments.

For Lokad, it is clear that the benefits on the computational load
does not justify their use. Worse, their propensity to diverge and gen-
eral unstability are a bad omen for any future use in an industrial
context, where reliability is key.

Still, our work should not be without interest for Lokad, as our
experiments showed opportunities to use more efficient optimizers
than Adam. Notably, we readily recommend Adam be replaced by
AdaBelief.

On the theoretical side, we believe there are still many open roads
for future work.

Most notably, we have not conducted any deep learning experi-
ments, where Baydin et al. reported encouraging results for forward
gradients. We believe more experiments are needed to evaluate how
well they compare to true gradients on more diverse architectures.
More importantly, it remains mysterious to us as to why forward gra-
dients would not struggle in such a high dimensional setting as neu-
ral networks are, and we trust that further work on this topic would
bring a better theoretical understanding.

Alternatively, one could try to design optimizers specifically suited
for forward gradients. For instance, the first moment in Adam, which
acts as a predictor of what the gradient is going to be, could be used
to bias the forward tangent distribution. Although our early experi-
ments did not pan out, we are interested to explore this idea further.

40

A
D E R I VAT I O N S

a.1 proof of Property 2

We provide here the proof for the Property 2

Proof.

E
[
‖∇f(θ) − g(θ)‖2

]
=
∑
i

bias(gi(θ)) + V(gi(θ))

=
∑
i

E[gi(θ)
2] − E[gi(θ)]

2

=
∑
i

‖∇f(θ)‖2 −∇fi(θ)2

= (n− 1)‖∇f(θ)‖2

a.2 how far does a random walk go ?

lemma 2 : divergence speed of a random walk

Let (Xi) be i. i. d. centered Rademacher variables. Then

E

[
|

n∑
i

Xi|

]
=

√
2n

π
+O(

1√
n
)

Proof. We treat the case where n = 2N is even to alleviate notations.
The case of odd n is similar. First we compute

N∑
k=0

(
2N

k

)
k = 2N

N−1∑
k=0

(
2N− 1

k

)
= 2N4N−1

and

2

N−1∑
k=0

(
2N

k

)
+

(
2N

N

)
= 4N

⇒
N−1∑
k=0

(
2N

k

)
=
4N −

(
2N
N

)
2

⇒
N∑
k=0

(
2N

k

)
=
4N +

(
2N
N

)
2

41

A.2 how far does a random walk go ? 42

Then

4NE

[
|

2N∑
i

Xi|

]
=

N−1∑
k=0

(
2N

k

)
(2N− k− k) +

2N∑
k=N+1

(
2N

k

)
(k− (2N− k))

= 2

N∑
k=0

(
2N

k

)
(2N− 2k)

= 4N
4N +

(
2N
N

)
2

− 2N4N

= 2N

(
2N

N

)
Only remains now to estimate the asymptotic behaviour with Stirling:

E

[
|

2N∑
i

Xi|

]
=
2N

4N

(
2N

N

)

∼
2N

4N

(
2N
e

)2N√
4πN(

N
e

)2N
2πN

∼
2N√
Nπ

=

√
2n

π

We can get the more precise result from the theorem by using one
more term in the Stirling series, which we leave to the reader.

n! =
√
2πn(

n

e
)n
(
1+O(

1

n
)

)

B I B L I O G R A P H Y

[1] Francis Bach. Lecture notes: Statistical machine learning and con-
vex optimization. 2016. url: https://www.di.ens.fr/~fbach/
orsay2016/lecture2.pdf.

[2] Lukas Balles and Philipp Hennig. “Dissecting Adam: The Sign,
Magnitude and Variance of Stochastic Gradients”. en. In: Pro-
ceedings of the 35th International Conference on Machine Learning.
ISSN: 2640-3498. PMLR, July 2018, pp. 404–413. url: https :

//proceedings.mlr.press/v80/balles18a.html (visited on
07/01/2022).

[3] Michael Bartholomew-Biggs, Steven Brown, Bruce Christianson,
and Laurence Dixon. “Automatic differentiation of algorithms”.
en. In: Journal of Computational and Applied Mathematics. Numer-
ical Analysis 2000. Vol. IV: Optimization and Nonlinear Equa-
tions 124.1 (Dec. 2000), pp. 171–190. issn: 0377-0427. doi: 10.
1016/S0377-0427(00)00422-2. url: https://www.sciencedirect.
com / science / article / pii / S0377042700004222 (visited on
08/12/2022).

[4] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreye-
vich Radul, and Jeffrey Mark Siskind. “Automatic differentia-
tion in machine learning: a survey”. In: arXiv:1502.05767 [cs,
stat] (Feb. 2018). arXiv: 1502.05767. url: http://arxiv.org/
abs/1502.05767 (visited on 05/09/2022).

[5] Atılım Güneş Baydin, Barak A. Pearlmutter, Don Syme, Frank
Wood, and Philip Torr. “Gradients without Backpropagation”.
In: arXiv:2202.08587 [cs, stat] (Feb. 2022). arXiv: 2202.08587. url:
http://arxiv.org/abs/2202.08587 (visited on 05/06/2022).

[6] Vahid Beiranvand, Warren Hare, and Yves Lucet. “Best prac-
tices for comparing optimization algorithms”. In: Optimization
and Engineering 18.4 (Dec. 2017). arXiv:1709.08242 [math], pp. 815–
848. issn: 1389-4420, 1573-2924. doi: 10 . 1007 / s11081 - 017 -

9366 - 1. url: http : / / arxiv . org / abs / 1709 . 08242 (visited
on 08/16/2022).

[7] Richard Bellman. Adaptive Control Processes. Princeton Univer-
sity Press, 1961. isbn: 978-0-691-07901-1. url: http://www.jstor.
org/stable/j.ctt183ph6v (visited on 08/18/2022).

[8] Clifford. “Preliminary Sketch of Biquaternions”. en. In: Proceed-
ings of the London Mathematical Society s1-4.1 (1871). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s1-
4.1.381, pp. 381–395. issn: 1460-244X. doi: 10.1112/plms/s1-
4.1.381. url: https://onlinelibrary.wiley.com/doi/abs/10.
1112/plms/s1-4.1.381 (visited on 08/12/2022).

43

https://www.di.ens.fr/~fbach/orsay2016/lecture2.pdf
https://www.di.ens.fr/~fbach/orsay2016/lecture2.pdf
https://proceedings.mlr.press/v80/balles18a.html
https://proceedings.mlr.press/v80/balles18a.html
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
https://www.sciencedirect.com/science/article/pii/S0377042700004222
https://www.sciencedirect.com/science/article/pii/S0377042700004222
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/2202.08587
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1007/s11081-017-9366-1
http://arxiv.org/abs/1709.08242
http://www.jstor.org/stable/j.ctt183ph6v
http://www.jstor.org/stable/j.ctt183ph6v
https://doi.org/10.1112/plms/s1-4.1.381
https://doi.org/10.1112/plms/s1-4.1.381
https://onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-4.1.381
https://onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-4.1.381

bibliography 44

[9] Benjamin Dauvergne and Laurent Hascoët. “The Data-Flow Equa-
tions of Checkpointing in Reverse Automatic Differentiation”.
en. In: Computational Science – ICCS 2006. Ed. by David Hutchi-
son et al. Vol. 3994. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 566–573. isbn: 978-3-540-34385-1 978-3-540-34386-8. doi: 10.
1007/11758549_78. url: http://link.springer.com/10.1007/
11758549_78 (visited on 05/10/2022).

[10] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas
Usunier. “A Simple Convergence Proof of Adam and Adagrad”.
In: arXiv:2003.02395 [cs, stat] (Oct. 2020). arXiv: 2003.02395. url:
http://arxiv.org/abs/2003.02395 (visited on 05/12/2022).

[11] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Pro-
grams. arXiv:1810.07951 [cs]. Mar. 2019. url: http : / / arxiv .

org/abs/1810.07951 (visited on 08/12/2022).

[12] Momin Jamil, Xin-She Yang, and Hans-Jürgen Zepernick. “8 -
Test Functions for Global Optimization: A Comprehensive Sur-
vey”. en. In: Swarm Intelligence and Bio-Inspired Computation. Ed.
by Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gan-
domi, and Mehmet Karamanoglu. Oxford: Elsevier, Jan. 2013,
pp. 193–222. isbn: 978-0-12-405163-8. doi: 10.1016/B978- 0-
12- 405163- 8.00008- 9. url: https://www.sciencedirect.
com/science/article/pii/B9780124051638000089 (visited on
08/08/2022).

[13] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochas-
tic Optimization. arXiv:1412.6980 [cs]. Jan. 2017. url: http://
arxiv.org/abs/1412.6980 (visited on 07/29/2022).

[14] Mykel J Kochenderfer and Tim A Wheeler. “Algorithms for Op-
timization”. en. In: (Mar. 2019), p. 520.

[15] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. “Au-
tograd: Effortless Gradients in Numpy”. en. In: (2015), p. 3.

[16] Charles C. Margossian. “A review of automatic differentiation
and its efficient implementation”. en. In: WIREs Data Mining
and Knowledge Discovery 9.4 (2019). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1305,
e1305. issn: 1942-4795. doi: 10.1002/widm.1305. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/widm.1305

(visited on 07/29/2022).

[17] Eric Moulines and Francis Bach. “Non-Asymptotic Analysis of
Stochastic Approximation Algorithms for Machine Learning”.
In: Advances in Neural Information Processing Systems. Vol. 24.
Curran Associates, Inc., 2011. url: https://papers.nips.cc/
paper/2011/hash/40008b9a5380fcacce3976bf7c08af5b-Abstract.

html (visited on 08/05/2022).

https://doi.org/10.1007/11758549_78
https://doi.org/10.1007/11758549_78
http://link.springer.com/10.1007/11758549_78
http://link.springer.com/10.1007/11758549_78
http://arxiv.org/abs/2003.02395
http://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
https://doi.org/10.1016/B978-0-12-405163-8.00008-9
https://doi.org/10.1016/B978-0-12-405163-8.00008-9
https://www.sciencedirect.com/science/article/pii/B9780124051638000089
https://www.sciencedirect.com/science/article/pii/B9780124051638000089
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1002/widm.1305
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1305
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1305
https://papers.nips.cc/paper/2011/hash/40008b9a5380fcacce3976bf7c08af5b-Abstract.html
https://papers.nips.cc/paper/2011/hash/40008b9a5380fcacce3976bf7c08af5b-Abstract.html
https://papers.nips.cc/paper/2011/hash/40008b9a5380fcacce3976bf7c08af5b-Abstract.html

bibliography 45

[18] Y. Nesterov. “A method for solving the convex programming
problem with convergence rate O(1/k^2)”. en. In: undefined (1983).
url: https://www.semanticscholar.org/author/Y.-Nesterov/
143676697 (visited on 09/02/2022).

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. “Automatic differentiation in
PyTorch”. en. In: (2017), p. 4.

[20] Paul Peseux. “Programmation différentiable à grande échelle
pour les données relationnelles”. These en préparation. Nor-
mandie, 2020. url: http://www.theses.fr/s245013 (visited
on 08/08/2022).

[21] Paul Peseux, Maxime Berar, Thierry Paquet, and Victor Nicol-
let. “Stochastic Gradient Descent with gradient estimator for
symbolical features”. en. In: (2022), p. 31.

[22] Herbert Robbins and Sutton Monro. “A Stochastic Approxima-
tion Method”. In: The Annals of Mathematical Statistics 22.3 (Sept.
1951). Publisher: Institute of Mathematical Statistics, pp. 400–
407. issn: 0003-4851, 2168-8990. doi: 10.1214/aoms/1177729586.
url: https : / / projecteuclid . org / journals / annals - of -

mathematical-statistics/volume-22/issue-3/A-Stochastic-

Approximation-Method/10.1214/aoms/1177729586.full (vis-
ited on 09/02/2022).

[23] Jeffrey Mark Siskind and Barak A. Pearlmutter. “Divide-and-
Conquer Checkpointing for Arbitrary Programs with No User
Annotation”. In: Optimization Methods and Software 33.4-6 (Nov.
2018). arXiv: 1708.06799, pp. 1288–1330. issn: 1055-6788, 1029-
4937. doi: 10.1080/10556788.2018.1459621. url: http://
arxiv.org/abs/1708.06799 (visited on 05/10/2022).

[24] Axel Thevenot. Optimization & Eye Pleasure: 78 Benchmark Test
Functions for Single Objective Optimization. en. Feb. 2022. url:
https://towardsdatascience.com/optimization-eye-pleasure-

78-benchmark-test-functions-for-single-objective-optimization-

92e7ed1d1f12 (visited on 08/30/2022).

[25] R. E. Wengert. “A simple automatic derivative evaluation pro-
gram”. In: Communications of the ACM 7.8 (1964), pp. 463–464.
issn: 0001-0782. doi: 10.1145/355586.364791. url: https://
doi.org/10.1145/355586.364791 (visited on 08/15/2022).

[26] Xin-She Yang. Test Problems in Optimization. arXiv:1008.0549 [math].
Aug. 2010. doi: 10.48550/arXiv.1008.0549. url: http://arxiv.
org/abs/1008.0549 (visited on 08/11/2022).

https://www.semanticscholar.org/author/Y.-Nesterov/143676697
https://www.semanticscholar.org/author/Y.-Nesterov/143676697
http://www.theses.fr/s245013
https://doi.org/10.1214/aoms/1177729586
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://doi.org/10.1080/10556788.2018.1459621
http://arxiv.org/abs/1708.06799
http://arxiv.org/abs/1708.06799
https://towardsdatascience.com/optimization-eye-pleasure-78-benchmark-test-functions-for-single-objective-optimization-92e7ed1d1f12
https://towardsdatascience.com/optimization-eye-pleasure-78-benchmark-test-functions-for-single-objective-optimization-92e7ed1d1f12
https://towardsdatascience.com/optimization-eye-pleasure-78-benchmark-test-functions-for-single-objective-optimization-92e7ed1d1f12
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://doi.org/10.48550/arXiv.1008.0549
http://arxiv.org/abs/1008.0549
http://arxiv.org/abs/1008.0549

bibliography 46

[27] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda,
Nicha Dvornek, Xenophon Papademetris, and James Duncan.
“AdaBelief Optimizer: Adapting Stepsizes by the Belief in Ob-
served Gradients”. In: Advances in Neural Information Processing
Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 18795–18806.
url: https://proceedings.neurips.cc/paper/2020/hash/
d9d4f495e875a2e075a1a4a6e1b9770f - Abstract . html (visited
on 07/01/2022).

https://proceedings.neurips.cc/paper/2020/hash/d9d4f495e875a2e075a1a4a6e1b9770f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d9d4f495e875a2e075a1a4a6e1b9770f-Abstract.html

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of May 8, 2023 (classicthesis version 0.1).

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Acknowledgements
	Contents
	Acronyms
	1 Introduction
	1.1 Context of the Internship
	1.1.1 Lokad
	1.1.2 Goals of the internship

	1.2 Results
	1.3 Organization of this Report

	2 Automatic Differentiation
	2.1 Automatic Differentiation in a nutshell
	2.1.1 Forward and reverse modes
	2.1.2 Checkpointing

	2.2 Forward Gradient

	3 Optimization in Machine Learning
	4 Automatic Differentiation in Envision
	4.1 Intermediate Representation
	4.1.1 ADSL
	4.1.2 Rex

	4.2 Partial Views of Parameters
	4.3 Forward Mode
	4.3.1 Implementing forward mode AD
	4.3.2 Proof of Concept for Memory Optimizations

	5 Optimization with Forward Gradients
	5.1 Choice of Tangent Law
	5.2 Mistakes in Forward Gradient Descent
	5.2.1 The Curse of Dimensionality
	5.2.2 Forward Gradient for Linear Objectives

	6 Experiments
	6.1 Experiments on test functions
	6.1.1 Specification
	6.1.2 Results

	6.2 Envision production scripts
	6.2.1 A typical supply chain model in Envision
	6.2.2 Convergence
	6.2.3 Computational costs

	6.3 Batch mode

	7 Conclusion
	A Derivations
	A.1 Proof of Property 2
	A.2 How far does a random walk go ?

	Bibliography
	Colophon

