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1
I N T R O D U C T I O N

Optimal stopping theory is concerned with finding the best policy
that determines the time to take an action in a stochastic environment,
in order to maximize some objective function. Historically, two canon-
ical examples have been thoroughly studied : the secretary problem
and the prophet inequality. Consider a seller with an item, and a finite
sequence of bidders. Each bidder arrives with a "take-it-or-leave-it" of-
fer to the seller, i.e. a price for the item.

secretary problem Secretary problem assumes no prior knowl-
edge of the bidders and is concerned with choosing the one highest
bid, with a strategy based only on the relative rank of the offers seen
so far. It is known from Dynkin [5] that in this classical setting, the
best strategy for n bidders consists in letting kn bidders pass, then
choosing the first bidder that offers more than all the previous ones.
We have kn

n → e−1 and P(choosing the highest bid) → e−1. Variants
of the secretary problem have been studied, where the number of
bidders seen is stochastic [1], [13]. One particular variant of interest is
when the total number of bidders is known, but only a subset of them
are seen. An interpretation of this situation is that a freeze variable
may stop the process of incoming bidders at a random time. This has
been studied by Ester Samuel-Cahn [16], who showed results similar
to the classical variant for uniform and geometric freeze.

prophet inequality In the prophet inequality setting, the seller
has stochastic prior knowledge of the bidders, but the order of ar-
rival is adversarial. The classical prophet inequality, from Krengel and
Sucheston [11], states that she can obtain at least half the expected re-
ward of a prophet who sells the same item but knows in advance
the offers of each bidder – and hence chooses the highest. Interest-
ingly, Samuel-Cahn showed that such approximation can be achieved
when the seller follows a simple single threshold rule, choosing the
first offer that comes above a fixed threshold [14].

Because of the wide range of applications, notably online auctions,
prophet inequalities have gained a lot of interest and a number of
variants have been thoroughly studied. This includes variants where
the seller may choose more than one offer [2], and in particular where
the set of accepted choices of bidders follows a matroid structure [10],
or variants where all offers follow the same stochastic distribution
[15], [8], [9], [3]. In every variant, the goal is to find a strategy that
optimizes the approximation of the prophet’s reward. Often however,
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introduction 2

the optimal strategy is difficult or too costly to implement, and it
makes sense to study simpler strategies – albeit suboptimal.

My internship director Martin Hoefer was interested in how the
introduction of a freeze in a prophet inequality setting changed the
prophet’s approximation ratio. Ester-Cahn has studied the setting
where a freeze variable is present, and the seller has prior stochastic
knowledge of the bidders, but tries only to maximize her probability
of choosing the highest bid (instead of maximizing her expected re-
ward) [17]. To our knowledge, no author have yet given a prophet’s
approximation ratio for a setting with freeze. The goal of the intern-
ship was hence to study what algorithms could be used in such situ-
ation, and to compute the derived ratio approximations.

To account for the freeze blocking access to part of the bids, we
define a "fair" prophet who chooses the highest bid before the freeze.
We also define a class of stopping rules, called "quantile rule", which,
although suboptimal, are very easy to implement and allow for an
easier performance analysis. In addition, finding the optimal quan-
tile rule requires minimal knowledge of the freeze distribution. Such
a rule consists in taking the first variable that comes with a value in
the top q quantile of its distribution. Our main contribution is that for
i.i.d. bidders, and a freeze variable F, the optimal quantile rule con-
sists in choosing quantile q = 1

E[F] , which ensures an approximation
ratio of the fair prophet of at least

E[1− (1− q)F]

.

In chapter 2, we present a more detailed state of the art that is clos-
est to our setting, namely the classical prophet inequality, the i.i.d.
prophet inequality and the works on freeze in optimal stopping the-
ory. In chapter 3, we give a proof of our main result and derive some
worst case adversarial behaviours for the buyers. Finally in chapter 4,
some perspectives to further the work on freeze prophet inequalities
are given.



2
S TAT E O F T H E A RT

2.1 the classical prophet inequality

A seller has one item to sell and looks to maximize her profit V .
She sequentially gets offers from n independent buyers in a "take-it-
or-leave-it" manner. In addition, the seller has prior stochastic knowl-
edge of the buyers, that is if Xi is the i-th offer, she knows Di the
distribution from which Xi is sampled.

The classical prophet inequality states that the seller has a strategy
that guarantees at least half the expected profit compared to that of a
prophet with complete foresight on the offers. That is,

sup{ET [X1, . . . ,Xn] | T stopping rule} >
1

2
E[X1 ∨ . . .∨Xn]

where A∨ B is the maximum of A and B, and a stopping rule is a
strategy for the seller based only on the offers seen so far. Formally,
T : Rn+ → [1,n] is a stopping rule if

T(x1, . . . , xn) = i =⇒ ∀yi+1, . . . ,yn, T(x1, . . . , xi,yi+1, . . . ,yn) = i

We used the natural notation ET [X1, . . . ,Xn] := E[XT(X1,...,Xn)].

2.1.1 Optimal algorithm

Let us first describe the idea for the seller’s optimal strategy, which
is achieved by backward induction. Suppose the seller has rejected the
first n − 1 offers. Then she should always take the last one, giving
her E[Xn] as an expected reward. Now the seller should accept the
n− 1-th buyer’s offer only when it outbids her expected reward if she
rejects it, which is E[Xn] ; this means that having reached the n− 1-th
step, optimal behaviour gives her an expected reward of E[Xn−1 ∨

E[Xn]]. Inductively, she can thus define n thresholds τ1, . . . , τn such
that the optimal strategy is to accept the first Xi higher than τi.

Now let Vi be the expected reward for the seller following an opti-
mal policy, given that she has reached step i. From what we described,
we have

Vn = E[Xn]

Vi = E[Xi ∨ Vi+1] for i = 1, . . . ,n− 1

3



2.1 the classical prophet inequality 4

Notice that these correspond to the thresholds mention earlier, namely
τi = Vi+1). Indeed the thresholds should act as "indifference values",
where the seller has no preference between receiving τi or moving
to step i+ 1. We see that the thresholds are decreasing. This is fairly
intuitive, as the more we approach from the end, the more we should
be lenient to accept smaller values.

The value of the optimal policy is ALG(X1, . . . ,Xn) := V1. This is to
be compared with the prophet’s expected reward OPT(X1, . . . ,Xn) :=
E[X1 ∨ . . .∨Xn].

theorem

The optimal policy achieves a 1
2 -approximation of the prophet, i.e.

ALG(X1, . . . ,Xn) >
1

2
OPT(X1, . . . ,Xn)

Proof. Let bi := (Xi−Vi+1)∨ 0 be the "bonus" the seller gets from the
i-th buyer. Recursively, we have that Vi = E[

∑
j>i bj] 6 ALG(X1, . . . ,Xn)

and hence ALG(X1, . . . ,Xn) = E[b1 + . . .+ bn]. Now note that Xi 6
bi + Vi+1. We can write

OPT(X1, . . . ,Xn) 6 E[max
i

(bi + Vi+1)]

6 E[max
i

(bi +ALG(X1, . . . ,Xn))]

= ALG(X1, . . . ,Xn) + E[max
i
bi]

6 ALG(X1, . . . ,Xn) + E[
∑
i

bi]

= 2ALG(X1, . . . ,Xn)

This short proof comes from Bo Waggoner[19], although the in-
equality is known from Krengel and Sucheston [11].

In fact the approximation ratio 1
2 is tight. To see this, take the case

n = 2, and define X1 = 1 almost surely, and X2 = 1/pwith probability
p, 0 otherwise, for some p > 0. The seller’s expected reward is 1
regardless of her strategy, while the prophet’s reward is 2− p. When
p approaches 0, the approximation ratio comes arbitrarily close to
1/2.

In many variants of the prophet inequality setting, the optimal
policy can easily be inductively defined as above, although its per-
formance analysis is rarely straightforward. But the optimal strategy
suffers from many drawbacks (typical from optimal solution for Bell-
man equations). It is fairly complicated (n numbers are necessary to
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describe it), it can be expensive to compute, it requires good knowl-
edge of the distributions. It is also sensible to small changes of the
distributions (like changing the order of arrival, or changing the i-
th distribution). For this reason, simpler algorithms are often devel-
opped. They are easier to describe, to implement and do not necessar-
ily achieve a worst approximation. Moreover, they might be helpful
to form a better understanding of the problem.

2.1.2 A single threshold algorithm achieves a 1/2 approximation ratio

A single threshold algorithm consists in choosing a threshold τ and
accepting the first Xi such that Xi > τ. A high threshold ensures
that the selected value is large, but risks rejecting every offer. A low
threshold accepts an offer with high probability, but does not guaran-
tee that the accepted offer is good. In the classical setting, the optimal
approximation ratio can actually be achieved with a single threshold
policy, by choosing half of OPT(X1, . . . ,Xn) (Samuel-Cahn [14]). In
fact, there is a range of thresholds that all guarantee a half approxi-
mation of the prophet (see for instance [19]).

2.2 the i .i .d. prophet inequality

An important variant of the prophet inequality is the i.i.d. prophet
inequality, which results from the added hypothesis that X1, . . . ,Xn
are identically distributed, say with the same distribution as that of
X. For this variant, the classical 0.5 approximation ratio can be signifi-
cantly improved upon to 1/β ≈ 0.7451where β is the unique solution
to

∫1
0(y− y ln(y) +β− 1)−1dy = 1.

single threshold policy A well known trick in mechanism
design is to select a threshold τ such that P(X > τ) = 1

n . That is, we
only select from the top 1

n quantile of the distribution. This policy
guarantees a 1− e−1 approximation ratio.

Indeed let u(x) be the expected value of X given that it takes value
in its top x quantile. Consider the i-th variable Xi, which is selected
with probability 1

n by the prophet. It can at most contribute 1
nu(

1
n) to

OPT(X). Hence overall, OPT(X) is bounded by u( 1n). Now note that
the seller accepts an offer with probability 1− (1− 1

n)
n > 1− e−1. It

follows that ALG(X) = (1− (1− 1
n)
n)u( 1n) > (1− e−1)OPT(X) (see

[7], theorem 1.5 for more details).

optimal approximation Hill and Kertz [8] provided a family
of worst instances for X, and the sequence (an) of optimal approxima-
tion ratios, which come as solutions of a family of recursively defined
–and fairly complicated– functions. However, they were not able to
compute the constant that this sequence implies, i.e. its lower bound.



2.3 optimal stopping under freeze 6

Kertz later proved that 1β is an upper bound of the optimal ratio (β
is defined above). In 2017 Correa and al. [3] provided an algorithm
that achieve a 1/β approximation, therefore proving that 1β is tight.
Their idea is very basic : the less buyers remain, the less exigent we
should be about the incoming offers and their algorithm thus defines
n increasing quantiles q1, . . . ,qn and accepts the first Xi that takes
value in the top qi quantile of the distribution. The way these quan-
tiles are determined and the performance analysis are however quite
tricky, and exceed the purpose of this report. Singla ([18], chapter 10)
reaches the same bound by relaxing the buyer’s arrival time (which
is classically discrete, with value taken in [[1,n]]) to the continuous
range R+. Upon arrival of a buyer, his algorithm simulates a Poisson
arrival process to obtain a time of arrival, and turns this time into a
threshold with a well chosen function.

The ratio 1
β will be a benchmark to compare our results in a freeze

setting.

2.3 optimal stopping under freeze

The concept of freeze was introduced for the secretary problem by
Samuel-Cahn [16]. She then provided a general theorem that states
that a freeze in a prophet inequality setting is equivalent to a dis-
counted reward [17]. More precisely, she proves that the seller’s opti-
mal reward is the same if there is a freeze F, or if there is no freeze,
but the benefits from accepting the i-th offer is discounted by a factor
of qi := P(F > i). Actually, the result shown is a little stronger : she
proved that the equivalence holds whether the seller gets φi(X1, . . . ,Xi)
in a freeze setting, or qiφi(X1, . . . ,Xi) without freeze, for any φi.

This theorem is then used to solve the problem where the seller
has stochastic knowledge of the buyers (as in the prophet inequality)
and tries to maximize her probability of choosing the highest (as in
the secretary problem), for uniform, geometric, and Poisson freezes.
This is not relevant for our problem.



3
O U R C O N T R I B U T I O N

For clarity, we repeat here the notation introduced in chapter 2. Let
X,X1, . . . ,Xn be i.i.d random positive bounded variables, with density
µX. Xi represents the offer of the i-th bidder. Let also FX(x) = P(X 6
x) be the cumulative distribution of X. For simplicity, we will assume
that FX is continuous and strictly increasing, but all the results easily
carry over for all FX.

Let F be the freeze variable, taking values in 1, . . . ,n. F = i means
that the bidding process will stop after the seller receives the offer Xi.
Let V be the reward of the seller (it is a random variable).

3.1 the fair prophet

The usual prophet inequality compares the seller’s reward with
OPTno freeze(X) = E[X1 ∨ . . .∨ Xn], that is the reward of a seller with
complete foresight. In a freeze setting, not every bidder will be seen,
and thus OPTno freeze(X) does not represent anymore the reward for
an optimal auction. Instead, we naturally compare the seller with a
fair prophet who chooses the highest bid before the freeze, that is

OPT(X) = E[X1 ∨ . . .∨XF]

In fact, the seller cannot hope to ensure a constant approximation
ratio of the unfair prophet. Indeed consider X = 1 with probability p,
and X = 0 otherwise, and F = 1 almost surely. The optimal strategy
for the seller is to always accept the first bid. She gets p in expectation.
The unfair prophet on the other hand always gets 1 unless all Xi’s
equal 0, hence OPTno freeze(X) = 1− (1− p)n. Letting p go to 0, the
approximation ratio approaches 1n , which can be rendered arbitrarily
small. Note that in fact 1n is tight, as

ALG > E[X1] =
1

n
E[

∑
Xi] >

1

n
E[X1 ∨ . . .∨Xn] =

1

n
OPTno freeze(X)

bounded approximation hypothesis Our hope is that there
exists some constant α such that for any n, F and X, the seller can
ensure an α approximation of OPT(X).

3.2 quantile rule

Recall that in the no freeze, i.i.d. bidders setting, the tight approx-
imation ratio is ≈ 0.7451. The algorithms achieving this bound are

7



3.3 main result 8

clever, and their performance analysis non trivial. Our approach is
instead motivated by the single 1

n quantile that achieves a 1− e−1 ≈
0.632 ratio, which is a fairly good approximation.

We thus restrict our analysis to a subset of stopping rules called
single quantile rules. Our hope is that one can readily obtain a good
bound for the optimal approximation ratio by optimizing over the set
of single quantile rules.

definition 1 : threshold rule

A τ-threshold rule for the seller consists in taking the first value
higher than τ.

definition 2 : single quantile rule

Let 0 6 q 6 1 be a quantile. The q-quantile rule is the τ-threshold
rule where τ is chosen such that P(X > τ) = q, that is τ = F−1

X (1−

q). We note ALGq(X) the corresponding reward expectation.

Note that for a large q, the seller almost always accepts an offer,
but with little guarantee that this offer is good. On the other hand,
if q is low, the accepted offers are always good but often the item is
not sold. The difficulty lies in finding the optimal trade-off between
accepting often enough and accepting high valued offers.

breaking ties For non continuous distribution and some τ-threshold
rule, it may happen that an offer comes exactly at the threshold, i.e.
Xi = τ for some i. It is intuitive to see that all results shown for conti-
nous distribution will carry over non-continuous ones, if we allow the
seller to break ties at random. In fact, not breaking ties can give strictly
worse approximations (see Correa and al. [4] section 4 for an example
of such difference in a variant called prophet secretary).

3.3 main result

Theorem 1 states what the optimal quantile is for a given freeze dis-
tribution, and gives the associated approximation ratio. The proof is
later detailed in section 3.4.

theorem 1

Let F be a freeze variable. The optimal single quantile rule chooses
the quantile q∗ = 1

E[F] . Then the following inequality holds

ALGq∗(X) > αF ·OPT(X)

where αF = E[1− (1− 1
E[F])

F].
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An important limitation of the result is that the quantile is opti-
mized across all possible buyer’s distributions. Against one given distri-
bution, there might be a better specific quantile.

Note that choosing the optimal single quantile rule requires min-
imal knowledge of the freeze, namely its expectation. We also note
that for the special case F = n a.s., which is the classical no freeze
setting, we do find that 1n is the optimal quantile, and that the associ-
ated approximation ratio is 1− (1− 1

n)
n which tends to 1− e−1 as n

grows.

For uniform freeze over [1,n], the approximation ratio obtained
by the optimal single quantile rule approaches 1+e−2

2 ≈ 0.567 as n
grows.

3.4 proof of Theorem 1

First note that because X is bounded, we can assume without loss of
generality that it takes value in [0, 1].

For a freeze variable F, we note

aF(i) = P(F = i)

lemma 1

We can express

E(X) = 1−

∫1
0

FX(x)dx

Proof.

E(X) =

∫1
0

xµX(x)dx

= [xFX]
1
0 −

∫1
0

FX(x)dx (by part integration)

= 1−

∫1
0

FX(x)dx

Let q be a quantile, and τ the associated threshold for X. We can
express OPT(X) and ALGq(X) in terms of FX.

lemma 2
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We have

OPT(X) = 1−

n∑
r=1

aF(r)

∫1
0

FrX

Proof. This follows immediately from

OPT(X) =

n∑
r=1

P(F = r)E(X1 ∨X2 ∨ . . .∨Xr)

noting that FX1∨...∨Xr = FrX.

lemma 3

We have

ALGq(X) = [τ+
1− τ

q
−
1

q

∫1
τ

FX]× [1−

n∑
r=1

aF(r)(1− q)
r]

Proof. For a given realisation r of F, the probability that any value
is accepted is 1− (1− q)r. The expected reward, given that a box is
accepted, is

E(V | V > 0) = E(X | X > τ)

=
1

q

∫1
τ

xµXdx

=
1

q

(
[xFX]

1
τ −

∫1
τ

FX

)

= τ+
1− τ

q
−

∫1
τ

FX

q

Summing ALGq(X) =
∑n
r=1E(V | V > 0, F = r)P(V > 0 | F =

r)P(F = r) concludes, noting that V is independent of F given that
V > 0.

Finding the best quantile approximation ratio thus leads to finding

α = sup
0<q<1

[1−

n∑
r=1

aF(r)(1− q)
r] · inf

X

τ+ 1−τ
q − 1

q

∫1
τ FX

1−
∑n
r=1 aF(r)

∫1
0 F

r
X

= sup
0<q<1

[1−

n∑
r=1

aF(r)(1− q)
r] · inf

0<τ<1
inf
X

P(X>τ)=q

τ+ 1−τ
q − 1

q

∫1
τ FX

1−
∑n
r=1 aF(r)

∫1
0 F

r
X

Let φ(q, τ) = inf
X

P(X>τ)=q

τ+ 1−τ
q − 1

q

∫1
τ FX

1−
∑n
r=1 aF(r)

∫1
0 F

r
X

. Now how should FX be cho-

sen to reach the infinimum φ(q, τ) ?
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lemma 4 : first restriction on F

Let F be the set of increasing functions over [0, 1] that verify F(0) =

1− q and F(1) = 1. We can constrain FX to be arbitrarily close to 0
over [0, τ[, so that

φ(q, τ) = inf
F∈F

τ+ 1−τ
q (1−

∫1
0 F)

1− (1− τ)
∑n
r=1 aF(r)

∫1
0 F

r

Proof. Note that the value of FX over [0, τ[ can be arbitrarily changed
without changing ALGq(X). Hence, since we should minimize the
denominator, which increases with

∫1
0 FX, we should have FX be close

to 0 over [0, τ[. This shows that

φ(q, τ) = inf
X

P(X>τ)=q

τ+ 1−τ
q − 1

q

∫1
τ FX

1−
∑n
r=1 aF(r)

∫1
τ F

r
X

Substituting x in the integrals, so that they are taken over [0, 1], yields
the lemma’s result.

The interpretation of lemma 4 is that before τ, the worst case sce-
nario is when the weight of µX is condensed at τ−.

lemma 5 : second restriction on F

In the equation of lemma 4, F can be considered almost constant,
meaning that

φ(q, τ) = inf
1−q<a<1

(
τ+

(1− τ)(1− a)

q

)
/

(
1− (1− τ)

n∑
r=1

aF(r)a
r

)

Proof. Let a =
∫1
0 F. By mean power theorem ([12]), we have that

n∑
r=1

aF(r)

∫1
0

Fr >
n∑
r=1

aF(r)(

∫1
0

F)r

=

n∑
r=1

aF(r)a
r

And equality can be achieved when F is constant.
Now with

∫1
0 F fixed,

∑n
r=1 aF(r)

∫1
0 F

r should be minimized to
reach the infinimum φ(q, τ), so F should be chosen almost constant.
Since F(0) must be equal to 1− q, and F(1) must be equal to 1,

∫1
0 F

can be chosen to be equal to any a where 1− q < a < 1. This yields
the result.

The interpretation of lemma 5 is that after τ, the worst case scenario
is when the weight of µX is focused at the extremal points, i.e. τ+ and
1
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Now letψ(q, τ,a) =
(
τ+

(1−τ)(1−a)
q

)
/ (1− (1− τ)

∑n
r=1 aF(r)a

r).
We aim to find infa,τψ(q,a, τ). Note that τ 7→ ψ(q, τ,a) is a homo-
graphic function of τ. Its infinimum should thus be reached at τ = 0

or τ = 1.
Before finishing the analysis, we introduce a useful function and

list some properties that it satisfies.

definition 3

Define over ]0, 1]

W : x 7−→ 1−
∑
aF(r)(1− x)

r

x

and W(0) = E(F)

proposition 1

W is continuous, decreasing, convex.

proposition 2

x 7→ xW(x) is continuous, increasing, concave.

Demonstrations of these proposition can be found in Appendix A.
Now we have

ψ(q, 0,a) =
1

q ·W(1− a)

ψ(q, 1,a) = 1

And because W is decreasing

inf
τ,a
ψ(q, τ,a) = min(1,

1

qE(F)
)

We can finally compute

α = sup
0<q<1

[1−

n∑
r=1

aF(r)(1− q)
r]min(1,

1

qE(F)
)

= sup
0<q<1

min(
W(q)

E(F)
,qW(q))

q 7→ W(q)
E(F) decreases from 1 to 0, and qW(q) increases from 0 to 1.

The sup of the min of the two is reached when they are equal. This
happens for q = 1

E(F) . This yields

α = 1−

n∑
r=1

aF(r)(1−
1

E(F)
)r

Or more consisely

α = E[1− (1−
1

E(F)
)F]
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3.5 adversarial strategy against a single quantile rule

seller

Looking at the proof allows us to understand what distribution
for X produces the worst case scenario. Notice that lemmas 4 and 5

show that X should push its weight to the extremal points for a given
constraint FX(1− q) = τ, i.e. splitting its weight between τ and 1.

Indeed we can show that two-point distributions suffice to achieve
the worst case scenario for a seller following a single quantile policy.
The proof is similar to that of section 3.4, although quite easier.

Fix some q-quantile strategy. For some a > 0, define

X =

a w.p. 1− p

1 w.p. p

We are going to show that the worst case scenario is achieved for
some a and p.

Now for such non continuous distribution, it might be conceptually
simpler to think of the quantile rule as a single τ threshold rule. Here
without loss of generality, we can assume that the seller chooses either
the threshold a or 1, as well as some 0 6 s 6 1 to break ties, i.e.
when a value comes equal to τ, she accepts the offer with probability
s. Notice that to be consistent with the quantile, we have

– if p 6 q, τ = a and q = p+ (1− p)s

– if p > q, τ = 1 and q = s

Let us compute ALGq(X) and OPT(X)

OPT(X) =

n∑
r=1

aF(r)E[X1 ∨ . . .∨Xr]

=

n∑
r=1

aF(r)(1− (1− a)(1− p)r)

= 1− (1− a)

n∑
r=1

aF(r)(1− p)
r

ALG(X, s) =
n∑
r=1

aF(r)P(an offer is accepted | F = r)E[V | V > 0]

=

n∑
r=1

aF(r)(1− (1− p)r(1− s)r)E[V | V > 0]

= E[V | V > 0]× (1−

n∑
r=1

aF(r)(1− q)
r)
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where

E[V | V > 0] =


p+a(1−p)s

q if p 6 q

1 otherwise

Notice that in either case, ALGq(X)OPT(X) is a homographic function of a.
Hence we only look at the cases a = 0 and a = 1. In fact, we can only
look at the case a = 0, as a = 1 is equivalent to p = 1 and a = 0.
Hence

ALGq(X)

OPT(X)
= min(1,

p

q
)× 1−

∑n
r=1 aF(r)(1− q)

r

1−
∑n
r=1 aF(r)(1− p)

r

= min(
Wn(q)

Wn(p)
,
qWn(q)

pWn(p)
)

Depending on q, the worst case scenario happens when p = 0 or
p = 1, which gives the ratio

min(
Wn(q)

E[F]
,qWn(q))

which is lower or equal than αF.

3.6 single threshold rule does not validate the bounded

approximation hypothesis

Unfortunately, Theorem 1 does not allow us to validate the bounded
approximation hypothesis. Indeed, the family αF is not lower bounded
by a strictly positive constant. Indeed consider the freeze

F =

1 w.p. 1− t

n w.p. t

for some large n and small t. It can render αF arbitrarily small.
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F U RT H E R P E R S P E C T I V E S

4.1 further work on the prophet inequality with freeze

i .i .d. setting The work done here on the i.i.d. prophet inequal-
ity with freeze still leaves a lot of room to work. Can we validate
or invalidate the bounded approximation hypothesis ? More impor-
tantly, how much can we improve the approximation ratio if we let
the thresholds vary as we advance ? Can we improve the approxima-
tion ratio by simply letting the quantile depend on the distribution ?
What is the optimal approximation ratio for some specific freeze fam-
ilies (e.g. the uniform freeze over [1,n], or the geometric freeze over
[1,n]) ? We made some unsuccessful attempts to generalize Singla’s
idea to relax the buyer’s time of arrival (see [18]), in order to de-
rive the optimal approximation radio for uniform freeze. We know
from our work that the optimal uniform freeze approximation ratio
is lower bounded by 1+e−2

2 ≈ 0.567, and it is upper bounded by the
average of the optimal ratio in the no freeze setting (this would be
achieved if the seller had foresight on the freeze), which in this case
tends to 1

β ≈ 0.745 as n grows.

general case We did not look at the general case where the buy-
ers are not required to follow the same distribution. Although this is
the variant closest to the classical prophet inequality, there exists as
far as we know no work in the litterature about it. Here we only
provide an example that shows that no constant approximation ratio
can be expected in all generality. We use the fact that knowing when
the freeze is exactly occurring is considerably advantageous to the
prophet. The idea is to have each Xi dwarf the one before, so that the
seller has to guess exactly when the freeze is occurring in order to do
achieve a good approximation.

Let n > 2, x > 1, and let Xi = xi almost surely. Let the freeze F
verify for 1 6 i 6 n,

P(F > i | F > i− 1) =
1

x

Hence P(F = i) =
1−1/x
xi−1

. Now let Vi be the optimal expected reward
of the seller, conditioned on her reaching step Xi after having rejected
the first i− 1. The optimal expected reward is achieved by following
the optimal strategy that is determined by backward induction. We
have

Vn = E(Xn) = x
n

15
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Vn−1 = E(max(Xn−1, P(F > n | F > n− 1)Vn)) = x
n−1

...

Vi = x
i

And hence the optimal strategy gives the seller an expected reward
of V1 = x. On the other hand, the prophet’s expected reward is

n−1∑
i=1

P(F = i)xi + P(F > n)xn = (1−
1

x
)

n−1∑
i=1

1

xi−1
xi +

1

xn
xn

= (1−
1

x
)(n− 1)x+ 1

= (n− 1)x

The approximation ratio is 1
n−1

4.2 prophet secretary with freeze

Some other variants were briefly investigated – albeit unsuccessfully.
In particular, the prophet secretary with freeze looks to be a good
"mid-point" between the i.i.d case and the general case. In prophet
secretary, the seller still tries to maximize her expected reward (just
like prophet inequality), but every order of arrival of the buyers is
equally likely (just like the secretary problem). It is known that with-
out freeze, the optimal approximation ratio is 1 − e−1 and can be
achieved with a single threshold algorithm [6]. Investigating the effect
of a freeze variable appears interesting to us. In particular, approxi-
mation ratios found in this setting would carry as a lower bound in
the i.i.d. case.



A
A P P E N D I X

Wn is continuous

1−
∑n
r=1 aF(r)(1− x)

r

x
=
0

1

x
× (1−

n∑
r=1

aF(r)(1− rx) + o(x))

=
0

1

x
× (1− 1+ x

n∑
r=1

aF(r)r) + o(1)

→
0

E[F]

and thus Wn is continuous in 0.

Wn is convex , decreasing Let ξr : x 7→ 1−(1−x)r

x . We have
Wn =

∑n
r=1 aF(r)ξr. Now we have

ξr(x) =

r−1∑
k=0

(1− x)k

where every (1− x)k is convex decreasing. Hence every ξr is convex
decreasing as well, and Wn is convex decreasing.

xWn(x) is continuous , increasing , concave Each −(1 −

x)r are increasing, concave functions of x, hence xWn is increasing
concave. It is obviously continuous.

17
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